• Title/Summary/Keyword: WET

Search Result 5,978, Processing Time 0.037 seconds

Evaluation of Wet Pressing Response of Recycled OCC with Roll Press Simulator (롤프레스를 적용한 골판지 고지지료의 압착탈수특성평가)

  • Sung, Yong-Joo;Jeong, Wong-Ki;Kim, Dong-Seop;Oh, Min-Taek;Hong, Hae-Un;Seo, Yong-Bum;Im, Chang-Kuk;Gwon, Wan-Oh;Kim, Jin-Doo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.4
    • /
    • pp.85-90
    • /
    • 2012
  • Wet pressing process has great influence not only on the paper properties but also on the efficiency of total manufacturing process including energy efficiency. The slow drainage propensity of old corrugated container(OCC) might require more complicated control of wet pressing process. In this study, the change in press efficiency and in structure of wet sheet by the various condition of laboratory roll press simulator were evaluated to provide background information about wet pressing of OCC. The higher pressure and the slower machine speed resulted in higher efficiency of wet pressing but the change trends of dryness depending on the wet press pressure and machine speed were shown differently according to OCC treatment. The effects of water contents of felt on the wet press efficiency and sheet structure were also investigated. The higher contents of water in felt resulted in less removal of water generally and the crushed structure of wet sheet were appeared especially at higher pressure.

Bread-making Properties of Rice Flours Produced by Dry, Wet and Semi-wet Milling (건식, 습식 및 반습식 쌀가루에 의한 쌀빵의 특성 비교)

  • Lee, Myung-Hee;Lee, Young-Tack
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.7
    • /
    • pp.886-890
    • /
    • 2006
  • Rice flours produced by dry, wet, and semi-wet milling methods were used to investigate bread-making properties. Wet milled rice flours were produced by two different steeping temperatures of $25^{\circ}C$ and $55^{\circ}C$, properties of composite flour containing 70% rice flour and 30% wheat flour with the addition of vital wheat gluten were tested. Among rice flours, wet milled rice flour showed increased mixing time and dough stability determined by a mixograph. Wet milled rice flours produced higher loaf volume compared with dry of semi-wet milled rice flours. Wet-milled rice flour steeped at $55^{\circ}C$ appeared to produce good rice breads with relatively high loaf volume. Crumb hardness of bread prepared with wet milled rice flour was lower than the other breads and increased slowly during 3-day storage at $25^{\circ}C$.

Effects of Aging and Aging Method on Physicochemical and Sensory Traits of Different Beef Cuts

  • Kim, Minsu;Choe, Juhui;Lee, Hyun Jung;Yoon, Yeongkwon;Yoon, Sungho;Jo, Cheorun
    • Food Science of Animal Resources
    • /
    • v.39 no.1
    • /
    • pp.54-64
    • /
    • 2019
  • Wet and dry aging methods were applied to improve the quality of three different beef cuts (butt, rump, and sirloin) from Hanwoo cows (quality grade 2, approximately 50-mon-old). After 28 d of wet aging (vacuum packaged; temperature, $2{\pm}1^{\circ}C$) and dry aging (air velocity, 2-7 m/s; temperature, $1{\pm}1^{\circ}C$; humidity, $85{\pm}10%$), proximate composition, cooking loss, water holding capacity, shear force, color, nucleotides content, and sensory properties were compared with a non-aged control (2 d postmortem). Both wet and dry aging significantly increased the water holding capacity of the butt cuts. Dry aging in all beef cuts induced lower cooking loss than that in wet-aged cuts. Shear force of all beef cuts was decreased after both wet and dry aging and CIE $L^*$, $a^*$, and $b^*$ color values in butt and sirloin cuts were higher in both wet and dry aging (p<0.05) groups than those in the non-aged control. Regardless of the aging method used, inosine-5'-monophosphate content among beef cuts was the same. The sensory panel scored significantly higher values in tenderness, flavor, and overall acceptability for dry-aged beef regardless of the beef cuts tested compared to non- and wet-aged cuts. In addition, dry-aged beef resulted in similar overall acceptability among the different beef cuts, whereas that in wet-aged meat was significantly different by different beef cuts. In conclusion, both wet and dry aging improved the quality of different beef cuts; however, dry aging was more suitable for improving the quality of less preferred beef cuts.

Reusing the Liquid Fraction Generated from Leaching and Wet Torrefaction of Empty Fruit Bunch

  • Lee, Jae-Won;Choi, Jun-Ho;Im, Hyeon-Soo;Um, Min;Lee, Hyoung-Woo
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.372-377
    • /
    • 2019
  • Leaching ($60^{\circ}C$, 5 min) and wet torrefaction ($200^{\circ}C$, 5 min) of empty fruit bunch (EFB) were carried out to improve the fuel properties; each liquid fraction was reused for leaching and wet torrefaction, respectively. In the leaching process, potassium was effectively removed because the leaching solution contained 707.5 ppm potassium. Inorganic compounds were accumulated in the leaching solution by increasing the reuse cycle of leaching solution. The major component of the leached biomass did not differ significantly from the raw material (p-value < 0.05). Inorganic compounds in the biomass were more effectively removed by sequential leaching and wet torrefaction (61.1%) than by only the leaching process (50.1%) at the beginning of the liquid fraction reuse. In the sequential leaching and wet torrefaction, the main hydrolysate component was xylose (2.36~4.17 g/L). This implied that hemicellulose was degraded during wet torrefaction. As in the leaching process, potassium was effectively removed and the concentration was accumulated by increasing the reuse cycle of wet torrefaction hydrolysates. There was no significant change in the chemical composition of wet torrefied biomass, which implied that fuel properties of biomass were constantly maintained by the reuse (four times) of the liquid fraction generated from leaching and wet torrefaction.

Wet Pressing Properties of OCC Stock depending on the Fines Contents (미세분 함량에 따른 골판지원지의 압착탈수 특성)

  • Jung, Woong-Ki;Sung, Yong Joo
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.44 no.6
    • /
    • pp.21-27
    • /
    • 2012
  • The effects of fines contents in OCC stock on the wet pressing process were evaluated in this study. The fines were collected from the beaten OCC stock by using 200 mesh. The dryness of handsheet samples after the couch and after the 1st wet press were greatly affected by the fine contents of the OCC stock. The higher contents of fines resulted in the lower value in dryness but the higher value of density followed by the higher strength properties. The addition of the retention aids and the drainage aids on the OCC stocks showed the wet pressing efficiency were greatly affected by the fine contents rather than the addition of polymer additives. The increase in the fine retention by the polymer additives offset the improvement in the wet pressing efficiency originated from the polymer additives.

Evaluation of Whole Effluent Toxicity (WET) Proficiency Testing for Water Quality Measurement Agencies in Korea (국내 수질측정대행업에 대한 생태독성 숙련도시험 평가)

  • Park, Woo Sang;Kim, Sang Hun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.4
    • /
    • pp.568-573
    • /
    • 2013
  • In this study, we conducted whole effluent toxicity (WET) proficiency testing based on the results which $EC_{50}$ value of 3 types (A, B, C) unknown samples calculated from 32 water quality measurement agencies in Korea. WET proficiency testing was expected to their improve of analysis skill and ensure reliability of analysis results. Ultimately, it is intended to promote the reliable enforcement of WET. WET proficiency testing was evaluated using the z-score, robust z-score and the results showed that 30 participating agencies were "compliance". In addition, $EC_{50}$ values of "unknown sample A" were the normal distribution. Therefore, "unknown sample A" was considered as the most suitable standard toxicity substance.

The Control of Anti-slip Characteristics of Packaging Paper Using Nano-colloidal Silica (나노 콜로이달 실리카를 이용한 포장용지의 미끄럼특성 제어)

  • Lee, Won-No;Kim, Hyoung-Jin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.37 no.3
    • /
    • pp.33-40
    • /
    • 2005
  • In this study, a nano-colloidal silica sol was applied to control the anti-slip property by spraying on kraft paper. Two kinds of nano-colloidal silica sol which have cationic and anionic charge were applied in kraft paper, and the friction and physical strength properties of kraft paper were investigated. The application of colloidal silica sol on wet web in wet-end process by spraying method was tried to improve the friction property and to avoid the general problems of machine contaminations caused by the scattering of sprayed silica particles in dryer part. The physical properties of sheet were also improved by the application of wet web spraying method, and the optimum conditions of wet web spraying operation were closely related with the conditions of pH and electrical charge of wet web and silica sol.

Energy Savings and Strength Improvement of Old Corrugated Container by Application of Wood Flour and Starch (목분과 전분을 이용한 골판지원지의 건조효율 및 물성향상)

  • Seo, Yung Bum;Jung, Jae Gwon;Ji, Sung Gil
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.99-105
    • /
    • 2016
  • The increase of wet web solid content after wet press and dry compressive strength were observed in lab study by judicious application of wood flour and starch for the old corrugated container (OCC). Pearl starch was better than cationic starch in strength development, but cationic starch was better for drainage. Application of vacuum on the mixed solution of wood flour and starch helped strength development further without loss of other properties. The effect of wood flour addition on wet web solid content improved as the wet pressing pressure increased. The use of wood flour and starch mixture improved wet web solid contents further.

Effect of filler loading on the wet end dewatering and paper properties (충전제가 습부 탈수 및 종이 물성에 미치는 영향)

  • Won, Jong-Myoung;Kim, Heung-Bae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.42 no.4
    • /
    • pp.33-38
    • /
    • 2010
  • The effects of fillers on the wet end dewatering and paper properties were investigated in order to confirm the possibility that the fillers can be used as a means for saving energy in papermaking process. The performance of GCC, PCC and talcs were evaluated. The dewatering in wire and wet press was improved by the increase of filler addition, but it was observed that the dewatering behavior was depended by the filler characteristics. PCC was superior to other fillers in the bulk, opacity, air permeability and stiffness while the lowest tensile and burst index were obtained. We found that the response on the wet end dewatering and paper properties were affected greatly by the filler characteristics including particle shape and size.

Wet Surface Performance Test of PF Heat Exchanger (PF열교환기의 습표면 성능시험)

  • Cho, J.P.;Kim, N.H.;Choi, K.K.
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.314-320
    • /
    • 2000
  • In this study, the wet surface heat transfer coefficients and friction factors of PF heat exchangers are presented. Two sample with different fin pitch(1.25mm, 1.5mm) were tested. Tests were conducted in a open loop wind tunnel. The wet surface heat transfer coefficient was reduced following the procedure given in ARI 410-81. Results showed that the heat transfer coefficients of the heat exchanger with 1.5mm fin pitch were approximately the same as those with 1.25mm fin pitch, except at low reynolds number(Re<100), where the heat transfer coefficients of 1.5mm fin pitch were slighly higher than those with 1.25mm fin pitch. The friction factors of the 1.25mm fin pitch, however was 120 % to 160 % higher than those of the 1.5mm fin pitch. The wet surface heat transfer coefficients were lower than those of the dry surface. The wet surface friction factors, however, were higher than those of the dry surface.

  • PDF