• Title/Summary/Keyword: WELDING

Search Result 8,743, Processing Time 0.031 seconds

Laser Welding Characteristics of Aluminum and Copper Sheets for Lithium-ion Batteries (자동차 이차전지 제조를 위한 알루미늄과 무산소동의 레이저 용접특성)

  • Kang, Minjung;Park, Taesoon;Kim, Cheolhee;Kim, Jeonghan
    • Journal of Welding and Joining
    • /
    • v.31 no.6
    • /
    • pp.58-64
    • /
    • 2013
  • Several joining methods involving resistance welding, laser welding, ultrasonic welding and mechanical joining are currently applied in manufacturing lithium-ion batteries. Cu and Al alloys are used for tab and bus bar materials, and laser welding characteristics for these alloys were investigated with similar and dissimilar material combinations in this study. The base materials used were Al 1050 and oxygen-free Cu 1020P alloys, and a disk laser was used with a continuous wave mode. In bead-on-plate welding of both alloys, the joint strength was higher than the strength of O tempered base material. In overlap welding, the effect of welding parameters on the tensile shear strength and bead shape was evaluated. Tensile shear strength of overlap welded joint was affected by interfacial bead width and weld defect formation. The tensile-shear specimen was fractured at the heat affected zone by selecting proper laser welding parameters.

Selection of an Optimal Welding Condition for Back Bead Formation in GMA Root Pass Welding (GMA 초층용접에서 이면비드 생성을 위한 최적용접조건의 선정)

  • Yun, Young-Kil;Kim, Jae-Woong;Yun, Seok-Chul
    • Journal of Welding and Joining
    • /
    • v.28 no.5
    • /
    • pp.86-92
    • /
    • 2010
  • In GMAW processes, bead geometry is a criterion to estimate welding quality. Bead geometry is affected by welding current, arc voltage, welding speed, shielding gas and so on. Thus the welding condition has to be selected carefully. In this paper, an experimental method for the selection of optimal welding condition was proposed in the root pass welding which was done along the GMA V-grooved butt weld joint. This method uses the response surface analysis in which the width and height of back bead were chosen as the quality variables of the weld. The overall desirability function, which is the combined desirability function for the two quality variables, was used as the objective function for getting the optimal welding condition. Through the experiments, the target values of the back bead width and the height were chosen as 4mm and 1mm respectively for the V-grooved butt weld joint. From a series of welding test, it was revealed that a uniform weld bead can be obtained by adopting the optimal welding condition which was determined according to the method proposed.

The Welding/Welding History DB Construction of OLP System For the Multi-Layer Welding on the Thick Steel Plates In Low Speed Diesel Engines (대형 저속 디젤엔진의 후판 다층 용접을 위한 OLP 시스템의 용접 용접/용접이력 DB 구축)

  • 김장규;이승환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.760-763
    • /
    • 2004
  • This work presents OLP system made independently in HSD for sub-assembly welding robot system set already and assembly welding robot system developed lately on the low speed diesel engines. This paper focuses on the DB module and the job creation based upon it. Also, It contains the welding history DB that saves the information of jobs executed after welding.

  • PDF

Development of Continuous/Intermittent Welding Mobile Robot (연단속 용접 주행로봇의 개발)

  • 강치정;전양배;감병오;신승화;김상봉
    • Proceedings of the KWS Conference
    • /
    • 2000.10a
    • /
    • pp.31-33
    • /
    • 2000
  • Welding processing is used in the various industrial fields such as shipbuilding, car, airplane and steel structure, etc.. But the welding process has a bad working condition and lack of skillful worker. The welding depended on man power causes low productivity and difficulty in keeping continuous and stable quality control. This paper shows the development results of welding mobile robot with the several functions such as continuous/intermittent welding, initial welding speed control, acceleration control, crater and deceleration speed control in welding end. The robot is developed based on microprocess which is intel 80c196kc.

  • PDF

Development of Seam Seal Welding System for Semiconductor Package (반도체 Package용 Seam Seal Welding System 개발)

  • 이우영;진경복;오장환;김경수
    • Journal of the Semiconductor & Display Technology
    • /
    • v.2 no.2
    • /
    • pp.21-24
    • /
    • 2003
  • Seam seal welding on the semiconductor package is a process for sealing the packages of semi-conductors, crystal parts, saw filters and oscillators with lid plate by seam welding. This paper presents the development process of automatic seam seal welding system. In this process, the process algorithm, high precision welding current control, design of welding head, high speed and high precision feeding mechanism and user interface process control program technologies are included.

  • PDF

Numerical Study on the Thermal Model of High Power Density Welding (고에너지 밀도용접의 온도특성에 관한 수치해석적 연구)

  • 이성호;고상근
    • Journal of Welding and Joining
    • /
    • v.10 no.2
    • /
    • pp.19-31
    • /
    • 1992
  • A numerical study was performed to investigate the flow field and the heat transfer characteristics occurring in high power density welding which is important in many fields of engineering applications. A two dimensional quasi-steady state of keyhole welding model is simulated by using the finite volume methods. It is shown that the shape of isothermal line is elliptic and the temperature gradient is very steep compared with other welding method and the welding speed has on welding width and observed beam power.

  • PDF

Metal Transfer Characteristics of Aluminium under Pulsed Current Metal Inert Gas Welding (알루미늄의 펄스 전류 미그 용접)

  • 최재호;최병도;김용석
    • Journal of Welding and Joining
    • /
    • v.20 no.5
    • /
    • pp.127-133
    • /
    • 2002
  • In this study, metal transfer characteristics in pulsed current metal inert gas (MIG) welding of aluminum was investigated. Based on the metal transfer characteristics from direct current electrode negative MIG welding, the one drop per one pulse(ODOP) condition was predicted and compared with experimental data. The results indicated that experimental pulse range for the ODOP condition is wider than that predicted from the DCEP MIG welding data. In addition, more stable metal trnasfer behavior was obtained at the higher end of the ODOP condition.

[Retracted] The Effect of Welding Conditions on Tensile Characteristics and Thermal Stress of Al 5083 Alloy Applied to Co-environmental Leisure Ships ([논문 철회] 친환경 레져선박에 적용되는 Al 5083 합금의 인장특성 및 열응력에 미치는 용접조건의 영향)

  • Moon, Byung Young;Lee, Ki Yeol;Kim, Kyu Sun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.6
    • /
    • pp.548-555
    • /
    • 2014
  • As a considerable, experimental approach, an Auto-carriage type of $CO_2$ welding machine and a MIG(Metal Inert Gas) welding robot under inert gas atmosphere were utilized in order to realize Al 5083 welding applied to hull and relevant components of green Al leisure ships. This study aims at investigating the effect of welding conditions(current, voltage, welding speed, etc) on thermal deformation that occurs as welding operation and tensile characteristics after welding, by using Al 5083, non-ferrous material, applied to manufacturing of co-environmental Al leisure ships. With respect to welding condition to minimize the thermal deformation, 150A and 16V at the wire-feed rate of 6mm/sec were acquired in the process of welding Al 5083 through an auto carriage type of $CO_2$ welding feeder. As to tensile characteristics of Al 5083 welding through a MIG welding robot, most of tensile specimens showed the fracture behavior on HAZ(Heat Affected Zone) located at the area joined with weld metal, except for some cases. Especially, for the case of the Al specimen with 5mm thickness, 284.62MPa of tensile strength and 11.41% of elongation were obtained as an actual allowable tensile stress-strain value. Mostly, after acquiring the optimum welding condition, the relevant welding data and technical requirements might be provided for actual welding operation site and welding procedure specification(WPS).

Bead Visualization Using Spline Algorithm (스플라인 알고리즘을 이용한 비드 가시화)

  • Koo, Chang-Dae;Yang, Hyeong-Seok;Kim, Maeng-Nam
    • Journal of Welding and Joining
    • /
    • v.34 no.1
    • /
    • pp.54-58
    • /
    • 2016
  • In this research paper, suggest method of generate same bead as an actual measurement data in virtual welding conditions, exploit morphology information of the bead that acquired through robot welding. It has many multiple risk factors to Beginners welding training, by we make possible to train welding in virtual reality, we can reduce welding training risk and welding material to exploit bead visualization algorithm that we suggest so it will be expected to achieve educational, environmental and economical effect. The proposed method is acquire data to each case performing robot welding by set the voltage, current, working angle, process angle, speed and arc length of welding condition value. As Welding condition value is most important thing in decide bead form, we would selected one of baseline each item and then acquired metal followed another factors change. Welding type is FCAW, SMAW and TIG. When welding trainee perform the training, it's difficult to save all of changed information into database likewise working angle, process angle, speed and arc length. So not saving data into database are applying the method to infer the form of bead using a neural network algorithm. The way of bead's visualization is applying the spline algorithm. To accurately represent Morphological information of the bead, requires much of morphological information, so it can occur problem to save into database that is why we using the spline algorithm. By applying the spline algorithm, it can make simplified data and generate accurate bead shape. Through the research paper, the shape of bead generated by the virtual reality was able to improve the accuracy when compared using the form of bead generated by the robot welding to using the morphological information of the bead generated through the robot welding. By express the accurate shape of bead and so can reduce the difference of the actual welding training and virtual welding, it was confirmed that it can be performed safety and high effective virtual welding education.

A Fundamental Study on Forecast of the Thin Plate Welding Deformation by Numerical Simulation (수치시뮬레이션에 의한 박판 용접 변형 예측에 관한 기초적 연구)

  • 김종명;박창수;김영표;방한서
    • Journal of Welding and Joining
    • /
    • v.21 no.1
    • /
    • pp.93-98
    • /
    • 2003
  • For construction of steel structures, thin steel plates have been often used and welding is the main manufacturing process. However, welding processes cause some problems(welding residual stresses, welding deformations, etc.). In these problems, welding deformation is extremely harmful to the safety of structures especially. Therefore, in this study, a numerical analysis program based on large deformation plate theory has been developed to analyze and predict the welding deformation in thin plates. From the result of numerical analyse, we can find two parameters, thermal cycles and mechanical restraints affecting the welding deformation of structures. It is considered that large difference of thermal cycles and mechanical restraints in the width direction bring about welding deformation. Results of simulation have the same tendency of deformation distribution in width direction as experimental formulas.