• Title/Summary/Keyword: WC-Ni

Search Result 74, Processing Time 0.034 seconds

Effect of Composition on Cutting Characteristics and Reliability Analysis of Ti(C,N) Cermet Tool (Ti(C,N)계 서메트 공구의 조성변화에 따른 절삭성능 및 신뢰도 분석)

  • Park, June-Seuk;Kim, Seong-Won;Kwon, Won-Tae;Kang, Shin-Hoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2336-2341
    • /
    • 2002
  • When WC and group IV elements are added to Ti(C,N)-Ni cermet, microstructures of the cermet is changed. The change effects directly on the property of the material. In this study, the amount of WC and group IV elements of Ti(C,N) cermet tool was investigated. The composition of WC was changed from 5 to 20wt% to determine the effect of WC on the cutting performance of cermet tool. The more WC was added, the longer the tool life of the cermet tool was. The cermet with lwt% ZrC and l4wt% WC showed the best cutting performance among the investigated cermet tools. The cutting performance of cermet cutting tools suggests the possibility in interrupted cutting for reliability test experimentation was performed repeatedly with $Ti(C_{0.7},N_{0.3})- l4WC-1ZrC-20Ni$ cermet tool machining SCM440. The flank wear of cermet cutting tool at given time condition is suitable for Normal distribution and Log normal distribution by Chi squared test.

A comparative study on corrosion behavior of WC-CoCr and WC-CrC-Ni coatings by HVOF

  • Ju, Yun-Gon;Jo, Jae-Yeong;Jang, Si-Hong;Song, Gi-O;Jo, Dong-Yul;Yun, Jae-Hong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.155-157
    • /
    • 2008
  • High velocity oxy-fuel (HVOF) thermal spraying coating has been used widely throughout the last 60 years mainly in defense, aerospace, and power plants. Recently this coating technique is considered as a promising candidate for the replacement of the traditional electrolytic hard chrome plating (EHC) which pollutes the environment and causes lung cancer by toxic hexa-valent $Cr^{6+}$. In this study, two kinds of cermet coatings, WC-CoCr and WC-CrC-Ni, are formed by HVOF spraying. The corrosion and electrochemical properties are evaluated by polarization tests in 3.5 wt% solutions.

  • PDF

Hardness of Constituent Phases in Ti(C0.7N0.3)-WC-Ni Cermets Measured by Nanoindentation (나노인덴테이션으로 측정한 Ti(C0.7N0.3)-WC-Ni 써멧 구성상의 경도)

  • Kim, Seong-Won;Kim, Dae-Min;Kang, Shin-Hoo;Kim, Hyeong-Jun;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.1
    • /
    • pp.116-121
    • /
    • 2009
  • The constituent phases in Ti($C_{0.7}N_{0.3}$)-xWC-20Ni (wt%, x=5, 15, 25) cermets were characterized using nanoindentation in conjunction with observation of microstructure. The microstructure of cermet is composed of hard phase and binder phase, which gave rise to a wide range of hardness distribution when nanoindentation was carried out on the polished surface of cermets. Because of the inhomogeneous nature of cermet microstructure, observation of indented surface was indispensable in order to separate the hardness of each constituent phase. The measured values of hardness using nanoindentation were ${\sim}14\;GPa$ for the binder phase and ${\sim}24$ to 28 GPa for the hard phase, of which nanoindentation hardness was decreased with the addition of WC into Ti($C_{0.7}N_{0.3}$)-Ni system. In addition, the nanoindentation hardness of Ni binder phase was much higher than reported Vickers hardness, which could result from confined deformation of binder phase due to the surrounding hard phase particles.

Effect of Composition on Cutting Characteristics of Ti(C,N) Cermet Tool (Ti(C,N)계 서메트 공구의 조성변화가 절삭성능에 미치는 영향)

  • 박준석;김경재;김성원;권원태;강신후
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.1
    • /
    • pp.144-150
    • /
    • 2003
  • When WC and group IV elements are added to Ti(C,N)-Ni substrate, microstructures of the cermet is changed. The microstructure gives direct effect on the property of the material. In this study, the amount of WC and group W elements of Ti(C,N) cermet tool was investigated. The composition of WC was changed from 5 to 20wt% to determine the effect of WC on the cutting performance of cermet tool. The more WC was added, the longer the tool life of the cermet tool was. The cermet with 20wt% WC showed the best fracture toughness. The effect of group W elements; ZrC, ZrN and HfC was also investigated by adding each of them to manufacture the cermet tool with fixed l4wt% WC composition. The cermet with 1wt% ZrC and 14wt% WC showed the best cutting performance among the investigated cermet tools.

Development of Higher Wear Resistance WC Roll for Finishing Stands of Wire Rod Mill (선재 사상압연용 고내마모 텅스템카비아드롤 개발)

  • 이영민;조용근
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.08a
    • /
    • pp.272-278
    • /
    • 1999
  • Tungsten Carbide(WC) Roll is widely used in finishing stands of wire rod mill. This report is about the manufacturing method of WC roll with excellent wear resistance. To enhance wear resistance, WC content has been increased to the maximum extent while binder content such as Co, Ni, Cr has been minimized. Part of WC is replaced with TiC having more wear resistant than WC. WTiC powder has been used to prevent weight unbalance resulting from the difference of specific weight when adding TiC. The roll manufactured by this method, is having more wear resistance than the existing rolls when applying to the final stand of the finishing mill. This report shows that WC is the critical factor of wear resistance in WC rolls and an approprite amount of TiC effects wear resistance and when adding TiC, using WTiC powder is better.

  • PDF

Effect of additives on the electrical properties of W/WC contacts (W/WC계 접점의 전기적 특성에 미치는 첨가물의 영향)

  • 신대승;이희웅;변우봉;한세원
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.10a
    • /
    • pp.112-114
    • /
    • 1988
  • W/WC-Cu/Ag contacts of 60wt%-40wt% base and contacts with additives(Ni, Co, C) of 1wt% below were prepared by a press-sinter-infiltrate process to compare with their physical properties and arc erosion characteristics. In physical properties, electrical conductivity of contacts with additive is lower than that of base contacts but hardness is higher. The results of arc test show that the erosion rate of contact with -0.1wt% Ni is decreased.

  • PDF

Tribological Behavior Analysis of WC-Ni-Cr + Cr3C2 and WC-Ni-Cr + YSZ Coatings Sprayed by HVOF (고속 화염 용사법으로 제조된 WC계 Cr3C2 코팅과 WC계 YSZ 코팅의 마찰 및 마모 거동 연구)

  • Tae-Jun Park;Gye-Won Lee ;Yoon-Suk Oh
    • Journal of Powder Materials
    • /
    • v.30 no.5
    • /
    • pp.415-423
    • /
    • 2023
  • With the increasing attention to environmental pollution caused by particulate matter globally, the automotive industry has also become increasingly interested in particulate matter, especially particulate matter generated by automobile brake systems. Here, we designed a coating composition and analyzed its mechanical properties to reduce particulate matter generated by brake systems during braking of vehicles. We designed a composition to check the mechanical properties change by adding Cr3C2 and YSZ to the WC-Ni-Cr composite composition. Based on the designed composition, coating samples were manufactured, and the coating properties were analyzed by Vickers hardness and ball-on-disk tests. As a result of the experiments, we found that the hardness and friction coefficient of the coating increased as the amount of Cr3C2 added decreased. Furthermore, we found that the hardness of the coating layer decreased when YSZ was added at 20vol%, but the friction coefficient was higher than the composition with Cr3C2 addition.

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process (방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가)

  • Kim, Ju-Hun;Park, Hyun-Kuk
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.392-396
    • /
    • 2021
  • Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Quantitative Investigation of Grain Growth in Carbide Added(Mo$_2$C, ZrC and WC) to TiC-Ni Matrix Cermets

  • Kim, Soon-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.5 no.1
    • /
    • pp.19-26
    • /
    • 2004
  • The growth of solid particles in TiC-XC-2vo1.% and TiC-XC-30vo1.% Ni alloys, (where X=Zr, W or Mo) was fitted to the equation of the form $d^3$-${do}^3$=Kt during the liquid phase sintering at 1,673K. Also, the grain growth behavior decreased markedly with the addition of ${MO}_2$C or WC and increased with the addition of zrC. The contiguity was greater in the alloys with a smaller growth rate constant and especially, decreased by increasing the Ni content in the TiC-${MO}_2$C-Ni alloy. In addition, the effect of the addition of carbide on the grain growth of 2 vo1.% Ni alloys was found to be similar to that of 30vo1.% Ni alloys. Consequently, the grain growth mechanism cannot be explained by the usual solution / reprecipitation process, but can be explained in terms of a new growth velocity equation, which includes the effects of contiguous carbide grain boundaries in restricting the overall grain growth, as well as the area of the solid / liquid interface in the alloy.