References
- S. Y. Zhang, “Titanium Carbonitride-Based Cermets: Process and Properties,” Mater. Sci. Eng. A, 163 141-48 (1993). https://doi.org/10.1016/0921-5093(93)90588-6
- E. B. Clark and B. Roebuck, “Extending the Application Areas for Titanium Carbonitride Cermets,” Refract. Met. Hard Mater., 11 23-33 (1992). https://doi.org/10.1016/0263-4368(92)90081-C
- P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, “Ti(C,N) Cermets-Metallurgy and Properties,” Int. J. Refract. Met. Hard Mater., 13 343-51 (1995). https://doi.org/10.1016/0263-4368(95)00027-G
- H. Matsubara, S. Shin, and T. Sakuma, “Grain Growth of TiC and Ti(C,N) Base Cermet During Liquid Phase Sintering,” Solid State Phenom., 25&26 551-58 (1992). https://doi.org/10.4028/www.scientific.net/SSP.25-26.551
- H. Suzuki, H. Matsubara, and T. Saitoh, “The Microstructures of Ti(C,N)-Mo2C-Ni Cermet Affected by WC Addition,” Jpn. Soc. Powder Powder Metall., 31 [7] 236-40 (1983).
- H. Suzuki and H. Matsubara, “Some Properties of Ti(C,N)-WC-Ni Alloy,” Jpn. Soc. Powder Powder Metall., 33 [4] 199-203 (1986). https://doi.org/10.2497/jjspm.33.199
- L. E. Toth, “Transition Metal Carbides and Nitrides,” pp. 6-7, Academic Press, New York and London, 1971.
- W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, and G. Groboth, “Solid State Properties of Group IVb Carbonitrides,” J. Alloys & Comp., 217 [1] 137- 47 (1995). https://doi.org/10.1016/0925-8388(94)01315-9
- M. F. Doerner and W. D. Nix, “A Method for Interpreting the Data from Depth-Sensing Indentation Instruments,” J. Mater. Res., 1 601-9 (1986). https://doi.org/10.1557/JMR.1986.0601
- W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7 [6] 1564-83 (1992). https://doi.org/10.1557/JMR.1992.1564
- M. G. Gee, R. Roebuck, P. Lindahl, and H-O Andren, “Constituent Phase Nanoindentation of WC/Co and Ti(C,N) Hard Metals,” Mater. Sci. & Eng. A, 253 128-36 (1996). https://doi.org/10.1016/0921-5093(95)10099-7
- S. Guicciardi, L. Silvestroni, G. Pezzotti, and D. Sciti, “Depth-Sensing Indentation Hardness Characterization of HfC-Based Composites,” Adv. Eng. Mater., 9 [5] 389-92 (2007). https://doi.org/10.1002/adem.200600202
- X. Shi, H. Yang, G. Shao, X. Duan, and Z. Xiong, “Nanoindentation Study of Ultrafine WC-10Co Cemented Carbide,” Mater. Char., 59 374-79 (2008). https://doi.org/10.1016/j.matchar.2007.02.004
- F. Qi and S. Kang, “A Study on Microstructural Changes in Ti(C,N)-NbC-Ni Cermets,” Mat. Sci. & Eng. A, 251 [1-2] 276-85 (1998). https://doi.org/10.1016/S0921-5093(98)00609-1
- S. Ahn and S. Kang, “Effect of VC Addition on the Microstructure and Mechanical Properties of Ti(C,N)-Based Cermet,” J. Kor. Ceram. Soc., 35 [12] 1316-22 (1998).
- K. W. Chae, D. I. Chun, D. Y. Kim, Y. J. Baik, and K. Y. Eun, “Microstructural Evolution During the Infiltration Treatment of Titanium Carbide Iron Composite,” J. Am. Ceram. Soc., 73 [7] 1979-82 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05255.x
- D. I. Chun, D. Y. Kim, and K. Y. Eun, “Microstructural Evolution During the Sintering of TiC-Mo-Ni Cermets,” J. Am. Ceram. Soc., 76 [8] 2049-252 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb08331.x
- S. Kim, “Dissolution-Reprecipitation Related Phenomena in Cermet System,” pp. 58-63, Ph.D. Thesis, Seoul National University, Seoul, 2006.
- L. Qian, M. Li, Z. Zhou, H. Yang, and X. Shi, “Comparison of Nano-indentation Hardness to Microhardness,” Surf. Coat. Technol., 195 264-71 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.108
- A. Grosjeana, M. Rezrazia,U, J. Takadoumb, and P. Bercot, “Hardness, Friction and Wear Characteristics of Nickel-SiC Electroless Composite Deposits,” Surf. Coat. Tech., 137 92-6 (2001). https://doi.org/10.1016/S0257-8972(00)01088-4
Cited by
- Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities vol.48, pp.4, 2011, https://doi.org/10.4191/KCERS.2011.48.4.288
- A Comparative Study of CrN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Metallic Bipolar Plate vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.390
- A Comparative Study of CrN Coatings Deposited by DC and Asymmetric Bipolar Pulsed DC Sputtering vol.47, pp.2, 2014, https://doi.org/10.5695/JKISE.2014.47.2.086
- A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering vol.47, pp.4, 2014, https://doi.org/10.5695/JKISE.2014.47.4.168
- A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering vol.48, pp.4, 2015, https://doi.org/10.5695/JKISE.2015.48.4.136