DOI QR코드

DOI QR Code

Hardness of Constituent Phases in Ti(C0.7N0.3)-WC-Ni Cermets Measured by Nanoindentation

나노인덴테이션으로 측정한 Ti(C0.7N0.3)-WC-Ni 써멧 구성상의 경도

  • Kim, Seong-Won (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Dae-Min (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kang, Shin-Hoo (Department of Materials Science and Engineering, Seoul National University) ;
  • Kim, Hyeong-Jun (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Hyung-Tae (Engineering Ceramic Center, Korea Institute of Ceramic Engineering and Technology)
  • 김성원 (요업기술원 엔지니어링세라믹센터) ;
  • 김대민 (요업기술원 엔지니어링세라믹센터) ;
  • 강신후 (서울대학교 재료공학부) ;
  • 김형준 (요업기술원 엔지니어링세라믹센터) ;
  • 김형태 (요업기술원 엔지니어링세라믹센터)
  • Published : 2009.01.31

Abstract

The constituent phases in Ti($C_{0.7}N_{0.3}$)-xWC-20Ni (wt%, x=5, 15, 25) cermets were characterized using nanoindentation in conjunction with observation of microstructure. The microstructure of cermet is composed of hard phase and binder phase, which gave rise to a wide range of hardness distribution when nanoindentation was carried out on the polished surface of cermets. Because of the inhomogeneous nature of cermet microstructure, observation of indented surface was indispensable in order to separate the hardness of each constituent phase. The measured values of hardness using nanoindentation were ${\sim}14\;GPa$ for the binder phase and ${\sim}24$ to 28 GPa for the hard phase, of which nanoindentation hardness was decreased with the addition of WC into Ti($C_{0.7}N_{0.3}$)-Ni system. In addition, the nanoindentation hardness of Ni binder phase was much higher than reported Vickers hardness, which could result from confined deformation of binder phase due to the surrounding hard phase particles.

Keywords

References

  1. S. Y. Zhang, “Titanium Carbonitride-Based Cermets: Process and Properties,” Mater. Sci. Eng. A, 163 141-48 (1993). https://doi.org/10.1016/0921-5093(93)90588-6
  2. E. B. Clark and B. Roebuck, “Extending the Application Areas for Titanium Carbonitride Cermets,” Refract. Met. Hard Mater., 11 23-33 (1992). https://doi.org/10.1016/0263-4368(92)90081-C
  3. P. Ettmayer, H. Kolaska, W. Lengauer, and K. Dreyer, “Ti(C,N) Cermets-Metallurgy and Properties,” Int. J. Refract. Met. Hard Mater., 13 343-51 (1995). https://doi.org/10.1016/0263-4368(95)00027-G
  4. H. Matsubara, S. Shin, and T. Sakuma, “Grain Growth of TiC and Ti(C,N) Base Cermet During Liquid Phase Sintering,” Solid State Phenom., 25&26 551-58 (1992). https://doi.org/10.4028/www.scientific.net/SSP.25-26.551
  5. H. Suzuki, H. Matsubara, and T. Saitoh, “The Microstructures of Ti(C,N)-Mo2C-Ni Cermet Affected by WC Addition,” Jpn. Soc. Powder Powder Metall., 31 [7] 236-40 (1983).
  6. H. Suzuki and H. Matsubara, “Some Properties of Ti(C,N)-WC-Ni Alloy,” Jpn. Soc. Powder Powder Metall., 33 [4] 199-203 (1986). https://doi.org/10.2497/jjspm.33.199
  7. L. E. Toth, “Transition Metal Carbides and Nitrides,” pp. 6-7, Academic Press, New York and London, 1971.
  8. W. Lengauer, S. Binder, K. Aigner, P. Ettmayer, A. Guillou, J. Debuigne, and G. Groboth, “Solid State Properties of Group IVb Carbonitrides,” J. Alloys & Comp., 217 [1] 137- 47 (1995). https://doi.org/10.1016/0925-8388(94)01315-9
  9. M. F. Doerner and W. D. Nix, “A Method for Interpreting the Data from Depth-Sensing Indentation Instruments,” J. Mater. Res., 1 601-9 (1986). https://doi.org/10.1557/JMR.1986.0601
  10. W. C. Oliver and G. M. Pharr, “An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments,” J. Mater. Res., 7 [6] 1564-83 (1992). https://doi.org/10.1557/JMR.1992.1564
  11. M. G. Gee, R. Roebuck, P. Lindahl, and H-O Andren, “Constituent Phase Nanoindentation of WC/Co and Ti(C,N) Hard Metals,” Mater. Sci. & Eng. A, 253 128-36 (1996). https://doi.org/10.1016/0921-5093(95)10099-7
  12. S. Guicciardi, L. Silvestroni, G. Pezzotti, and D. Sciti, “Depth-Sensing Indentation Hardness Characterization of HfC-Based Composites,” Adv. Eng. Mater., 9 [5] 389-92 (2007). https://doi.org/10.1002/adem.200600202
  13. X. Shi, H. Yang, G. Shao, X. Duan, and Z. Xiong, “Nanoindentation Study of Ultrafine WC-10Co Cemented Carbide,” Mater. Char., 59 374-79 (2008). https://doi.org/10.1016/j.matchar.2007.02.004
  14. F. Qi and S. Kang, “A Study on Microstructural Changes in Ti(C,N)-NbC-Ni Cermets,” Mat. Sci. & Eng. A, 251 [1-2] 276-85 (1998). https://doi.org/10.1016/S0921-5093(98)00609-1
  15. S. Ahn and S. Kang, “Effect of VC Addition on the Microstructure and Mechanical Properties of Ti(C,N)-Based Cermet,” J. Kor. Ceram. Soc., 35 [12] 1316-22 (1998).
  16. K. W. Chae, D. I. Chun, D. Y. Kim, Y. J. Baik, and K. Y. Eun, “Microstructural Evolution During the Infiltration Treatment of Titanium Carbide Iron Composite,” J. Am. Ceram. Soc., 73 [7] 1979-82 (1990). https://doi.org/10.1111/j.1151-2916.1990.tb05255.x
  17. D. I. Chun, D. Y. Kim, and K. Y. Eun, “Microstructural Evolution During the Sintering of TiC-Mo-Ni Cermets,” J. Am. Ceram. Soc., 76 [8] 2049-252 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb08331.x
  18. S. Kim, “Dissolution-Reprecipitation Related Phenomena in Cermet System,” pp. 58-63, Ph.D. Thesis, Seoul National University, Seoul, 2006.
  19. L. Qian, M. Li, Z. Zhou, H. Yang, and X. Shi, “Comparison of Nano-indentation Hardness to Microhardness,” Surf. Coat. Technol., 195 264-71 (2005). https://doi.org/10.1016/j.surfcoat.2004.07.108
  20. A. Grosjeana, M. Rezrazia,U, J. Takadoumb, and P. Bercot, “Hardness, Friction and Wear Characteristics of Nickel-SiC Electroless Composite Deposits,” Surf. Coat. Tech., 137 92-6 (2001). https://doi.org/10.1016/S0257-8972(00)01088-4

Cited by

  1. Mechanical Behavior of Indentation Stress in Carbon Fiber Reinforced Silicon Carbide Composites with Different Densities vol.48, pp.4, 2011, https://doi.org/10.4191/KCERS.2011.48.4.288
  2. A Comparative Study of CrN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Sputtering for a Polymer Electrolyte Membrane Fuel Cell (PEMFC) Metallic Bipolar Plate vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.390
  3. A Comparative Study of CrN Coatings Deposited by DC and Asymmetric Bipolar Pulsed DC Sputtering vol.47, pp.2, 2014, https://doi.org/10.5695/JKISE.2014.47.2.086
  4. A Comparative Study of TiAlN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering vol.47, pp.4, 2014, https://doi.org/10.5695/JKISE.2014.47.4.168
  5. A Comparative Study of NbN Coatings Deposited by DC and Pulsed DC Asymmetric Bipolar Magnetron Sputtering vol.48, pp.4, 2015, https://doi.org/10.5695/JKISE.2015.48.4.136