DOI QR코드

DOI QR Code

Mechanical Property Evaluation of WC-Co-Mo2C Hard Materials by a Spark Plasma Sintering Process

방전플라즈마 소결 공정을 이용한 WC-Co-Mo2C 소재의 기계적 특성평가

  • Kim, Ju-Hun (Korea Institute of Industrial Technology (KITECH), Smart Mobility Materials and Components R&D Group) ;
  • Park, Hyun-Kuk (Korea Institute of Industrial Technology (KITECH), Smart Mobility Materials and Components R&D Group)
  • Received : 2021.05.13
  • Accepted : 2021.06.14
  • Published : 2021.07.27

Abstract

Expensive PCBN or ceramic cutting tools are used for processing of difficult-to-cut materials such as Ti and Ni alloy materials. These tools have the problem of breaking easily due to their high hardness but low fracture toughness. To solve these problems, cutting tools that form various coating layers are used in low-cost WC-Co hard material tools, and research on various tool materials is being conducted. In this study, binderless-WC, WC-6 wt%Co, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are densified using horizontal ball milled WC-Co, WC-Co-Mo2C powders, and spark plasma sintering process (SPS process). Each SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are almost completely dense, with relative density of up to 99.5 % after the simultaneous application of pressure of 60 MPa and almost no significant change in grain size. The average grain sizes of WC for Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are about 0.37, 0.6, 0.54, and 0.43 ㎛, respectively. Mechanical properties, microstructure, and phase analysis of SPSed Binderless-WC, WC-6 wt%Co-1 wt% Mo2C, and WC-6 wt%Co-2.5 wt% Mo2C hard materials are investigated.

Keywords

Acknowledgement

This study has been conducted with the support of the Korea Institute of Industrial Technology as "Production technology commercialization project (KITECH EH-21-025)".

References

  1. J. Garcia, V. Collado Cipres, A. Blomqvist and B. Kaplan, Int. J. Refract. Met. Hard Mater., 80, 40 (2019). https://doi.org/10.1016/j.ijrmhm.2018.12.004
  2. H. Xie, X. Son, F. Yin and Y. Zhang, Sci. Rep., 6, 31047 (2016). https://doi.org/10.1038/srep31047
  3. X. Liu, X. Song, H. Wang, X. Liu, F. Tang and H. Lu, Acta Mater., 149, 164 (2018). https://doi.org/10.1016/j.actamat.2018.02.018
  4. S. J. Oh, J. H. Jun, M. H. Lee, I. J. Shon and S. J. Lee, Met. Mater. Int., 24, 597 (2018). https://doi.org/10.1007/s12540-018-0082-y
  5. Q. Yang, J. Yang, H. Yang, G. Ni and J. Ruan, Int. J. Refract. Met. Hard Mater., 62, 104 (2017). https://doi.org/10.1016/j.ijrmhm.2016.06.018
  6. Q. Yang, S. Yu, C. Zheng, J. Liao, J. Li, L. Chen, S. Guo, Y. Ye and H. Chen, Ceram. Int., 46, 1824 (2020). https://doi.org/10.1016/j.ceramint.2019.09.158
  7. S. U. Wei, Y. X. Sun and H. L. Yang, Trans. Nonferrous Met. Soc. China, 25, 1194 (2015). https://doi.org/10.1016/S1003-6326(15)63715-3
  8. G. R. Anstis, P. Chantikul, B. R. Lawn and D. B. Marshall, J. Am. Ceram. Soc., 64, 533 (1981). https://doi.org/10.1111/j.1151-2916.1981.tb10320.x
  9. C. Yin, Y. Peng, J. Ruan, L. Zhao, R. Zhang and Y. Du, Materials, 14, 1551 (2021). https://doi.org/10.3390/ma14061551
  10. M. Takada, H. Matsubara and Y. Kawagishi, Mater. Trans., 59, 754 (2018). https://doi.org/10.2320/matertrans.Y-M2018811