• Title/Summary/Keyword: WBG semiconductor device

Search Result 13, Processing Time 0.025 seconds

Research on High-Efficient Power Converters Using WBG Devices for Auxiliary Power Supplies (APS) System (WBG 소자를 적용한 보조전원장치의 고효율, 경량화 연구)

  • Cho, In-Ho;Lee, Jae-Bum
    • Journal of Advanced Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.203-208
    • /
    • 2017
  • Due to global climate change issues, there is a growing demand for systems throughout the industry. In the case of power conversion, studies have been actively conducted to change the structure of the power conversion circuit and to apply new power devices. In particular, the WBG (Wide Band Gap), which is newly emerged device in the market for developing semiconductor technology, has demonstrated advantages in applying for various aspects in comparison to the existing Si (Silicon) Semiconductor. Recent research centers in the railway industry are focusing on developing technologies suitable for railway vehicles by utilizing these new developments in railway countries such as Japan and Europe. This paper researches the WBG device that is applicable to the auxiliary power supplies (APS) in railway system, and analyzes the downsizing effects to APS in high-speed railway by conducting a theoretical analysis and simulation.

Device Suitability Analysis by Comparing Performance of SiC MOSFET and GaN Transistor in Induction Heating System (유도 가열 시스템에서 SiC MOSFET과 GaN Transistor의 성능 비교를 통한 소자 적합성 분석)

  • Cha, Kwang-Hyung;Ju, Chang-Tae;Min, Sung-Soo;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.204-212
    • /
    • 2020
  • In this study, device suitability analysis is performed by comparing the performance of SiC MOSFET and GaN Transistor, which are WBG power semiconductor devices in the induction heating (IH) system. WBG devices have the advantages of low conduction resistance, switching losses, and fast switching due to their excellent physical properties, which can achieve high output power and efficiency in IH systems. In this study, SiC and GaN are applied to a general half-bridge series resonant converter topology to compare the conduction loss, switching loss, reverse conduction loss, and thermal performance of the device in consideration of device characteristics and circuit conditions. On this basis, device suitability in the IH system is analyzed. A half-bridge series resonant converter prototype using the SiC and GaN of a 650-V rating is constructed to verify device suitability through performance comparison and verified through an experimental comparison of power loss and thermal performance.

Advances in Power Semiconductor Devices for Automotive Power Inverters: SiC and GaN (전기자동차 파워 인버터용 전력반도체 소자의 발전: SiC 및 GaN)

  • Dongjin Kim;Junghwan Bang;Min-Su Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.2
    • /
    • pp.43-51
    • /
    • 2023
  • In this paper, we introduce the development trends of power devices which is the key component for power conversion system in electric vehicles, and discuss the characteristics of the next-generation wide-bandgap (WBG) power devices. We provide an overview of the characteristics of the present mainstream Si insulated gate bipolar transistor (IGBT) devices and technology roadmap of Si IGBT by different manufacturers. Next, recent progress and advantages of SiC metal-oxide-semiconductor field-effect transistor (MOSFET) which are the most important unipolar devices, is described compared with conventional Si IGBT. Furthermore, due to the limitations of the current GaN power device technology, the issues encountered in applying the power conversion module for electric vehicles were described.

A Study on LCL Circuit for Satellite Power System Applying WBG Device (WBG 소자를 적용한 위성 전력 시스템용 LCL 회로에 관한 연구)

  • Yoo, Jeong Sang;Ahn, Tae Young;Gil, Yong Man;Kim, Hyun Bae;Park, Sung Woo;Kim, Kyu Dong
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.2
    • /
    • pp.101-106
    • /
    • 2022
  • In this paper, WBG semiconductor such as SiC and GaN were applied as power switches for LCL circuit that can be applied to satellite power systems and the test results of the LCL circuit are reported. P-channel MOSFET and N-channel MOSFET, which were generally used in the conventional LCL circuit, were applied together to expand the utility of the test results. The design and stability evaluation were performed using a Micro Cap circuit simulation program. For the test circuit, a module using each switch was manufactured, and a total of 5 modules were manufactured and the steady state and transient state characteristics were compared. From the experimental results, the LCL circuit for power supply of the satellite power system constructed in this paper satisfied the constant current and constant voltage conditions under various operating conditions. The P-channel MOSFET showed the lowest efficiency characteristics, and the three N-channel switches of Si, SiC and GaN showed relatively high efficiency characteristics of up to 99.05% or more. In conclusion, it was verified that the on-resistor of the switch had a direct effect on the efficiency and loss characteristics.

Recent Overview on Power Semiconductor Devices and Package Module Technology (차세대 전력반도체 소자 및 패키지 접합 기술)

  • Kim, Kyoung-Ho;Choa, Sung-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.3
    • /
    • pp.15-22
    • /
    • 2019
  • In these days, importance of the power electronic devices and modules keeps increasing due to electric vehicles and energy saving requirements. However, current silicon-based power devices showed several limitations. Therefore, wide band gap (WBG) semiconductors such as SiC, GaN, and $Ga_2O_3$ have been developed to replace the silicon power devices. WBG devices show superior performances in terms of device operation in harsh environments such as higher temperatures, voltages and switching speed than silicon-based technology. In power devices, the reliability of the devices and module package is the critically important to guarantee the normal operation and lifetime of the devices. In this paper, we reviewed the recent trends of the power devices based on WBG semiconductors as well as expected future technology. We also presented an overview of the recent package module and fabrication technologies such as direct bonded copper and active metal brazing technology. In addition, the recent heat management technologies of the power modules, which should be improved due to the increased power density in high temperature environments, are described.

Comparative Performance Evaluation of Si MOSFET and GaN FET Power System (Si MOSFET과 GaN FET Power System 성능 비교 평가)

  • Ahn, Jung-Hoon;Lee, Byoung-Kuk;Kim, Jong-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.283-289
    • /
    • 2014
  • This paper carries out a series of analysis of power system using Gallium Nitride (GaN) FET which has wide band gap (WBG) characteristics comparing to conventional Si MOSFET-used power system. At first, for comparison of each semiconductor device, the switching-transient parameter is quantitatively extracted from released information of GaN FET. And GaN FET model which reflect this dynamic property is configured. By using this model, the performance of GaN FET is analyzed comparing to Si MOSFET. Also, in order to enable a representative assessment on the power system level, Si MOSFET and GaN FET are applied to the most common structure of power system, full-bridge, and each power systems are compared based on various criteria, such as performance, efficiency and power density. The entire process is verified with the aid of mathematical analysis and simulation.

Development of Switching Power Module with Integrated Heat Sink and with Mezzanine Structure that Minimizes Current Imbalance of Parallel SiC Power Semiconductors (SiC 전력반도체의 병렬 구동 시 전류 불균형을 최소화하는 Mezzanine 구조의 방열일체형 스위칭 모듈 개발)

  • Jeong-Ho Lee;Sung-Soo Min;Gi-Young Lee;Rae-Young Kim
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.28 no.1
    • /
    • pp.39-47
    • /
    • 2023
  • This paper applies a structural technique with uniform parallel switch characteristics in gates and power loops to minimize the ringing and current imbalance that occurs when a general discrete package (TO-247)-based power semiconductor device is operated in parallel. Also, this propose a heat sink integrated switching module with heat sink design flexibility and high power density. The developed heat dissipation-integrated switching module verifies the symmetry of the parasitic inductance of the parallel switch through Q3D by ansys and the validity of the structural technique of the parallel switch using the LLC resonant converter experiment operating at a rated capacity of 7.5 kW.

Review on Gallium Nitride HEMT Device Technology for High Frequency Converter Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.1
    • /
    • pp.36-42
    • /
    • 2009
  • This paper presents a review of an improved high power-high frequency III-V wide bandgap (WBG) semiconductor device, Gallium Nitride (GaN). The device offers better efficiency and thermal management with higher switching frequency. By having higher blocking voltage, GaN can be used for high voltage applications. In addition, the weight and size of passive components on the printed circuit board can be reduced substantially when operating at high frequency. With proper management of thermal and gate drive design, the GaN power converter is expected to generate higher power density with lower stress compared to its counterparts, Silicon (Si) devices. The main contribution of this work is to provide additional information to young researchers in exploring new approaches based on the device's capability and characteristics in applications using the GaN power converter design.

Status of Silicon Carbide as a Semiconductor Device (SiC 반도체 기술현황과 전망)

  • Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.13-16
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도융의 WBG(WideBand-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드갭(band gap: $E_{g}$)이 높을 뿐만이 아니라 절연파괴강도 ($E_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, $V_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황에 대하여 살펴보고자 한다.

  • PDF

Status of Silicon Carbide as a Semiconductor Device (SiCqksehcp 기술현황과 전망)

  • 김은동
    • Electrical & Electronic Materials
    • /
    • v.14 no.12
    • /
    • pp.11-14
    • /
    • 2001
  • 반도체 동작시에 파워 손실을 최소화하는 것은 2000년대의 에너지, 산업전자, 정보통신 산업분야에서의 가장 주요한 요구 사항중의 하나이다. 실리콘계 반도체 소자들은 완전히 새로운 구동기구의 소자가 개발되지 않는 한, 실리콘 재료의 낮은 열전도율이나 낮은 절연파괴전계와 같은 물리적 특성한계 때문에 이러한 요구를 만족시키는 것이 불가능한 실정이다. 따라서 21세기를 위한 대안으로 고열전도율의 WBG(Wide Band-Gap) 물질 그 중에서도 탄화규소(SiC) 반도체가 제시되고 있다. SiC 반도체는 실리콘에 비하여 밴드 갭(band gap: E$_{g}$)이 높을 뿐만이 아니라 절연파괴강도(E$_{B}$)가 한 자릿수 이상 그리고 전자의 포화 drift 속도, V$_{s}$ 및 열전도도 k가 3배 가량 크다. 따라서 SiC는 고온 동작 내지는 고내압, 대전류, 저손실 반도체를 제작하는데 아주 유리하다. 본고에서는 응용성이 넓고, 단결정 제조가 비교적 용이한 SiC 반도체의 기술현황에 대하여 살펴보고자 한다.

  • PDF