• Title/Summary/Keyword: WAVE communication

Search Result 1,469, Processing Time 0.027 seconds

WAVE Communication-based V2I Channel Modeling

  • Lee, Soo-Hwan;Kim, Jong-Chan;Lim, Ki-Taek;Cho, Hyung-Rae;Seo, Dong-Hoan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.10
    • /
    • pp.899-905
    • /
    • 2016
  • Wireless access in vehicle environment (WAVE) communication is currently being researched as core wireless communication technologies for cooperative intelligent transport systems (C-ITS). WAVE consists of both vehicle to vehicle (V2V) communication, which refers to communication between vehicles, and vehicle to infrastructure (V2I) communication, which refers to the communication between vehicles and road-side stations. V2I has a longer communication range than V2V, and its communication range and reception rate are heavily influenced by various factors such as structures on the road, the density of vehicles, and topography. Therefore, domestic environments in which there are many non-lines of sight (NLOS), such as mountains and urban areas, require optimized communication channel modeling based on research of V2I propagation characteristics. In the present study, the received signal strength indicator (RSSI) was measured on both an experience road and a test road, and the large-scale characteristics of the WAVE communication were analyzed using the data collected to assess the propagation environment of the WAVE-based V2I that is actually implemented on highways. Based on the results of this analysis, this paper proposes a WAVE communication channel model for domestic public roads by deriving the parameters of a dual-slope logarithmic distance implementing a two-ray ground-reflection model.

Performance Verification of WAVE Communication Technology for Railway Application (차량용 무선통신기술(WAVE)의 철도 적용을 위한 성능검증)

  • Kim, Keum-Bee;Ryu, Sang-Hwan;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.4
    • /
    • pp.456-467
    • /
    • 2016
  • Wireless Access in Vehicular Environments (WAVE) communication technology, which provides vehicleto-vehicle and vehicle-to-infrastructure communication and offers safe and convenient service, has been developed for application to an Intelligent Transport System (ITS). This paper provides field test results on a study of the feasibility of WAVE technology application to railway communication systems. A test railway communication system based on WAVE technology has been built along the Daebul line and a newly developed EMU. Field tests have been carried out according to the communication function requirements for LTE - R. The test results show that the railway communication system based on WAVE technology meets the functional requirements: maximum transmission length is 730m, maximum transfer delay is 5.69ms, and maximum interruption time is 1.36s; other tests including throughput test, video data transmission test, VoIP data test, and channel switching test also produced results that meets the functional requirements. These results suggest that WAVE technology can be applied to the railway communication system, enabling Vehicle-to-Wayside communication.

Experimental Study of the Wireless Communication System by Surface Wave Communication through Confined Spaces on Vessels (선박 밀폐 공간 무선통신 구현을 위한 표면파 통신의 선박 활용연구)

  • Kong, Jin-Woo;Song, Suk-Gun;Kim, Hak-Sun;Kim, Bu-Young;Shim, Woo-Seong
    • Journal of Navigation and Port Research
    • /
    • v.45 no.6
    • /
    • pp.366-371
    • /
    • 2021
  • This study suggests surface wave communication, which uses a metal surface as a medium, to provide wireless communication in the extreme environment due to surrounding metal materials on vessels. The test was conducted on a G/T 265 tons tug boat to confirm the possibility of surface wave communication between a bridge and each designated space in the ship. As a result, the transmission speed was 13Mbps on average. In a test case of the bridge via the engine room, the transmission speed was 4.3Mbps on engine running and 1.2Mbps on sailing. It overcame this by partially changing the equipment installation location. Surface wave communication in bow storage, a fully enclosed space, had 8Mbps better transmission speed than wireless communication; this confirmed the superiority of surface wave communication in confined spaces on a vessel. Additional surface wave generators were designed and applied to resolve the paint issue. It is expected to use surface wave communication to implement the new wireless solution for Maritime-IoT system on vessels.

Experimental Study of Wireless Communication System by Surface wave Communication through Confined Spaces on Vessels (선박 밀폐 공간 무선통신 구현을 위한 표면파 통신의 선박 활용 연구)

  • Jin-Woo Kong;Suk-Gun Song;Hak-Sun Kim;Bu-Young Kim;Woo-Seong Shim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.127-128
    • /
    • 2021
  • This study suggests surface wave communication, which uses a metal surface as a medium, to provide wireless communication in the extreme environment due to surrounding metal materials on vessels. The test was conducted on a G/T 265 tons tug boat, and to confirm the possibility of surface wave communication between a bridge and each designated space in the boat. As a result, the transmission speed was 13Mbps in average. For the test case between the bridge and the engine room, transmission speed was 4.3Mbps while the engine was on, and 1.2Mbps during sailing. It was able to be overcome by partially changing the equipment installation location. Surface wave communication in a bow storage, a fully enclosed space, had 8Mbps better transmission speed than wireless communication; this confirmed the superiority of surface wave communication in confined spaces on a vessel. Additional surface wave generators were designed and applied to resolve the paint issue. It is expected to apply surface wave communication to implement the new wireless solution on vessels.

  • PDF

Design and Implementation of Secure Vehicle Communication Protocols for WAVE Communication Systems (WAVE 통신 시스템을 위한 차량 보안 통신 프로토콜의 설계 및 구현)

  • Park, Seung-Peom;Ahn, Jae-Won;Kim, Eun-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.841-847
    • /
    • 2015
  • The WAVE(Wireless Access in Vehicular Environments) communication system supports wireless communication environments between vehicles. As the utilization of wireless communication has been increased, attack methods have been varied. There is a high risk on packet manipulations conducted by third party. In this paper, we have designed a secure communication protocol between CA and vehicles. Our designed protocol uses a ECIES(Elliptic Curve Integrated Encryption Scheme) for vehicle authentication and AES(Advanced Encryption Standard) algorithm for protecting packet integrity and confidentiality.

A Study on Radio Wave Law Revision Content for Korea (한국의 전파법 개정내용에 관한 고찰)

  • Shin, Hyun-Sik
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.4 no.3
    • /
    • pp.176-182
    • /
    • 2009
  • The dissertation on today information communication technique development consist according to new broadcasting and communication appearanced fusion-service in earnest legislation's change about broadcasting and communication regulate the while separation On that score, radio wave law's change on environment change has been lively producing.

  • PDF

A Study on the Analysis and Simulation of WAVE Channel for IEEE802.11p Communication Systems (IEEE802.11p 통신 시스템을 위한 WAVE 채널 분석과 시뮬레이션 연구)

  • Kwak, Jae-Min
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.2
    • /
    • pp.214-223
    • /
    • 2009
  • In this paper, we analysed and simulated the high speed mobile wireless channel for IEEE802.11p WAVE/DSRC standard draft. IEEE802.11p working group measured and suggested 6 channel model for WAVE/DSRC systems which is used for vehicle to vehicle or vehicle to infra communication. However, the models only provides numerical model, it did not provide Computer based software simulation model. So it can not be used directly for performance estimation of WAVE system. In this paper we suggested simulation technique of WAVE channel simulation which is developed S/W based WAVE channnel simulator. The simulation results for PSD, LCR, and AFD are also obtained, which can be used for performance estimation of IEEE802.11p based vehicular communication system.

  • PDF

Physical Layer Issues in Vehicular Communications (차량통신에서의 물리계층 이슈)

  • Cho, Woong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.1229-1234
    • /
    • 2012
  • Vehicular communications have been receiving much attention in intelligent transport systems (ITS) by combining communication technology with automobile industries. In general, vehicular communications can be used for vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) communication by adopting IEEE802.11p/1609 standard which is commonly known as wireless access in vehicular environments (WAVE). WAVE system transmits signal in 5.9GHz frequency band with orthogonal frequency division multiplexing (OFDM) signaling. In this paper, we consider physical layer issues in vehicular communications. We first overview the physical (PHY) layer of WAVE standard and properties of 5.9GHz signals, and then physical layer issues to provide reliable communication link are discussed.

Design and Implementation of CRL download protocol for supporting of WAVE systems (WAVE 시스템 지원을 위한 CRL 다운로드 프로토콜의 설계 및 구현)

  • Yoo, Kwon-Jeong;Seon, Seol-Hee;Choi, Beom-Jin;Kim, Eun-Gi
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.800-806
    • /
    • 2015
  • WAVE(Wireless Access in Vehicular Environments) system is wireless communication technology that vehicle sends and receives packets between vehicles or between vehicles and infrastructure in a high-speed mobile environment. In this study, we have designed and implemented a CRL(Certificate Revocation List) download protocol that is used to verify certificate revocation status of the other party when the vehicles communicate with WAVE system. This protocol operates over UDP. And to support security features, also, ECDSA(Elliptic Curve Digital Signature Algorithm) is used for mutual authentication and ECIES(Elliptic Curve Integrated Encryption Scheme) is used to ensure the confidentiality. Moreover, this protocol ensures the integrity of data by adding MAC(Message Authentication Code) to the end of packet and support the error and flow control mechanisms.

A Quick Hybrid Atmospheric-interference Compensation Method in a WFS-less Free-space Optical Communication System

  • Cui, Suying;Zhao, Xiaohui;He, Xu;Gu, Haijun
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.612-622
    • /
    • 2018
  • In wave-front-sensor-less adaptive optics (WFS-less AO) systems, the Jacopo Antonello (JA) method belongs to the model-based class and requires few iterations to achieve acceptable distortion correction. However, this method needs a lot of measurements, especially when it deals with moderate or severe aberration, which is undesired in free-space optical communication (FSOC). On the contrary, the stochastic parallel gradient descent (SPGD) algorithm only requires three time measurements in each iteration, and is widely applied in WFS-less AO systems, even though plenty of iterations are necessary. For better and faster compensation, we propose a WFS-less hybrid approach, borrowing from the JA method to compensate for low-order wave front and from the SPGD algorithm to compensate for residual low-order wave front and high-order wave front. The correction results for this proposed method are provided by simulations to show its superior performance, through comparison of both the Strehl ratio and the convergence speed of the WFS-less hybrid approach to those of the JA method and SPGD algorithm.