• Title/Summary/Keyword: WATER ANALYSIS

Search Result 21,999, Processing Time 0.053 seconds

Assessment of Water Quality Characteristics in the Middle and Upper Watershed of the Geumho River Using Multivariate Statistical Analysis and Watershed Environmental Model (다변량통계분석 및 유역환경모델을 이용한 금호강 중·상류 유역의 수질특성평가)

  • Seo, Youngmin;Kwon, Kooho;Choi, Yun Young;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.37 no.6
    • /
    • pp.520-530
    • /
    • 2021
  • Multivariate statistical analysis and an environmental hydrological model were applied for investigating the causes of water pollution and providing best management practices for water quality improvement in urban and agricultural watersheds. Principal component analysis (PCA) and cluster analysis (CA) for water quality time series data show that chemical oxygen demand (COD), total organic carbon (TOC), suspended solids (SS) and total phosphorus (T-P) are classified as non-point source pollutants that are highly correlated with river discharge. Total nitrogen (T-N), which has no correlation with river discharge and inverse relationship with water temperature, behaves like a point source with slow and consistent release. Biochemical oxygen demand (BOD) shows intermediate characteristics between point and non-point source pollutants. The results of the PCA and CA for the spatial water quality data indicate that the cluster 1 of the watersheds was characterized as upstream watersheds with good water quality and high proportion of forest. The cluster 3 shows however indicates the most polluted watersheds with substantial discharge of BOD and nutrients from urban sewage, agricultural and industrial activities. The cluster 2 shows intermediate characteristics between the clusters 1 and 3. The results of hydrological simulation program-Fortran (HSPF) model simulation indicated that the seasonal patterns of BOD, T-N and T-P are affected substantially by agricultural and livestock farming activities, untreated wastewater, and environmental flow. The spatial analysis on the model results indicates that the highly-populated watersheds are the prior contributors to the water quality degradation of the river.

Water-Methanol and Water-Acetonitrile Mixture Analysis using NIR Spectral Data and Iterative Target Transform Factor Analysis

  • Na, Dae-Bok;Hur, Yun-Jeong;Park, Young-Joo;Cho, Jung-Hwan
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1289-1289
    • /
    • 2001
  • Water-methanol and water-acetonitrile mixtures are frequently used as HPLC solvent system and strong hydrogen bonding is well-known. But a detailed aspect of water-methanol and/or water-acetonitrile mixtures have not been shown with direct spectral evidence. Recently, near infrared spectroscopy and chemometric data refinery have been successfully combined in many applications. On the basis of factor analytical methods, the spectral features of water-methanol and water-acetonitrile mixtures were studied to reveal the detail of mixtures. Water-methanol and water-acetonitrile mixtures were prepared with varying concentration of each constituent and near infrared spectral data were acquired in the range of 1100-2500nm with 2-nm interval. The data matrices were analysed with ITTFA(Iterative Target Transform Factor Analysis) algorithm implemented as MATLAB codes. As a result, the concentration profiles of water, methanol and water-methanol complex were resolved and the spectra of water-methanol complexes were calculated, which cannot be acquired with pure complexes. A similar result was obtained with NIR spectral data of water-acetonitrile mixtures. Moreover, pure spectra of hydrogen-bonding complexes of water-methanol and water-acetonitrile can be computed, while any other usual physical methods cannot isolated those complexes for acquiring pure component spectra.

  • PDF

Vulnerability Assessment of Water Supply in Agricultural Reservoir Utilizing Probability Distribution and Reliability Analysis Methods (농업용 저수지 공급량과 수요량의 확률분포 및 신뢰성 해석 기법을 활용한 물 공급 취약성 평가)

  • Nam, Won-Ho;Kim, Tae-Gon;Choi, Jin-Yong;Lee, Jeong-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.2
    • /
    • pp.37-46
    • /
    • 2012
  • The change of rainfall pattern and hydrologic factors due to climate change increases the occurrence probability of agricultural reservoir water shortage. Water supply assessment of reservoir is usually performed current reservoir level compared to historical water levels or the simulation of reservoir operation based on the water budget analysis. Since each reservoir has the native property for watershed, irrigation district and irrigation water requirement, it is necessary to improve the assessment methods of agricultural reservoir water capability about water resources system. This study proposed a practical methods that water supply vulnerability assessment for an agricultural reservoir based on a concept of probabilistic reliability. The vulnerability assessment of water supply is calculated from probability distribution of water demand condition and water supply condition that influences on water resources management and reservoir operations. The water supply vulnerability indices are estimated to evaluate the performance of water supply on agricultural reservoir system, and thus it is recommended a more objective method to evaluate water supply reliability.

Optimized Design of Dioxin Analysis for Water Sample

  • Choi, Jaewon;Lee, Jaehee;Kim, Kyoungsim;Kim, Sunheong;Bae, Kyunghee
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.3
    • /
    • pp.219-229
    • /
    • 2005
  • The analytical methods for dioxins in water sample from wastewater to tap water were reviewed. For extraction method, liquid-liquid extraction (LLE) has been widely used, however, this process needs too much time and man power. New approach including solid phase extraction (SPE) is now applicable to large volume of water sample with high extraction efficiency. Column clean up in classical analytical methods were very complex and time consuming procedures during decade. Modifications were tried to decrease solvent and reagents volume. Moreover, use of column connection method has been demonstrated in the environmental matrices. Instrumental configurations also have been improved, in which GC/MS/MS with large volume injection approach can analyze picogram levels. Absolute sensitivities of HRMS increased compared to old versions of double focusing sector type mass spectrometers. Based on these analytical evolutions during last 10 years, we tried to optimize the analytical method for dioxins in water sample from sample extraction to instrumental analysis.

Calculation of the target revenue water ratio of local waterworks considering economic feasibility (경제성을 고려한 지방상수도 목표 유수율 산정)

  • Donghong Kim;Jaebum Lee;Jungkwan Song;Taeho Choi
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.37 no.6
    • /
    • pp.311-324
    • /
    • 2023
  • As an advanced study on the method of calculating the target revenue water ratio of local waterworks through the leakage component analysis method proposed by Kim et al. (2022), this study developed a model to calculate the achievable revenue water ratio within the specified project cost, the required project cost to achieve the specified target revenue water ratio, and the economically appropriate target revenue water ratio level by considering the leakage reduction cost and leakage reduction benefit for each revenue water ratio improvement strategy, and conducted an applicability evaluation of the developed model using actual field data. The procedure for calculating the target revenue water ratio of local waterworks considering economics proposed in this study consists of three stages: physical data linkage model construction, leakage component analysis, and economic analysis, and the applicability was evaluated for Zone H with branch type and the Zone M network type. As a result of the application, it was calculated that approximately 32.5 billion won would be required to achieve the target revenue water ratio of 70% in the Zone H, and approximately KRW 10.5 billion would be required to achieve the target revenue water ratio of 75% in the Zone M. If the business scale of Zones H and M was corrected to 10,000 m3/day of water usage, the required project cost for a 1% improvement in the revenue water ratio of Zone H was calculated to be 0.7642 billion won and 0.4715 billion won for Zone M.

Quantifying Uncertainty for the Water Balance Analysis (물수지 분석을 위한 불확실성 정량화)

  • Lee, Seung-Uk;Kim, Young-Oh;Lee, Dong-Ryul
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.4 s.153
    • /
    • pp.281-292
    • /
    • 2005
  • The water balance analysis for the long-term water resources plan is a simple calculation that compares water demands with possible water supplies. For a watershed being considered the reports on the performance of the water balance analysis, however, have shown inconsistent results and thus have not earned credibility due to the uncertainty of the data acquired and models used. In this research, uncertainties in the water scarcity estimate were assessed through probability representation based on the Monte Carlo simulation using Latin Hypercube Sampling (LHS). The natural flow, municipal demand, industrial demand, agricultural demand, and return flow rate were selected as representative input variables for the water balance analysis, and their distributions were set based on the linear regression and the entropy theory. The statistical properties of the output variable samples were analyzed in comparison with a deterministic estimate of the water scarcity of an existing study. Application of LHS to three sub-basins of the Geum river basin showed the deterministic estimate could be overestimated or underestimated. The sensitivity analysis as well as the uncertainty analysis found that the return flow rate of the agricultural water is the most uncertain but is rarely sensitive to the output of the water balance analysis.

Identification of pollutant sources and evaluation of water quality improvement alternatives of the Geum river

  • shiferaw, Natnael;Kim, Jaeyoung;Seo, Dongil
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.475-475
    • /
    • 2022
  • The aim of this study is to identify the significant pollutant sources from the tributaries that are affecting the water quality of the study site, the Geum River and provide a solution to enhance the water quality. Multivariate statistical analysis modles such as cluster analysis, Principal component analysis (PCA) and positive matrix factorization (PMF) were applied to identify and prioritize the major pollutant sources of the two major tributaries, Gab-cheon and Miho-cheon, of the Geum River. PCA identifies three major pollutant sources for Gab-cheon and Miho-cheon, respectively. For Gab-cheon, wastewater treatment plant (WWTP), urban, and agricultural pollutions are identified as major pollutant sources. For Miho-cheon, agricultural, urban, and forest land are identified as major pollutant sources. On the contrary, PMF identifies three pollutant sources in Gab-cheon, same as PCA result and two pollutant sources in Miho-cheon. Water quality control scenarios are formulated and improvement of water quality in the river locations are simulated and analyzed with the Environmental Fluid Dynamic Code (EFDC) model. Scenario results were evaluated using a water quality index developed by Canadian Council of Ministers of the Environment. PCA and PMF appears to be effective to identify water pollution sources for the Geum river and also its tributaries in detail and thus can be used for the development of water quality improvement alternative of the above water bodies.

  • PDF

A Study on the Water Quality of Reservoir Tank in the Building Complex on Jeonnam Area (대형건축물 저수조의 수질실태 및 개선방안에 관한 연구)

  • Lee, J.H.;Lee, H.H.;Kim, H.B.;Ahn, G.W.;Park, K.N.;Kim, Y.K.;Bae, J.S.;Mun, H.;Park, C.U.;Oh, E.H.;Park, S.I.;Seo, Y.G.
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.4
    • /
    • pp.59-77
    • /
    • 2000
  • This study was carried out to investigate on several factors, which contaminative the water quality through the water pipe during feeding water, in 42 largescaled apart-ments(total 84 cases) and assayed the Volatile Organic Compounds(VOCs) and concen-tration of heavy metals that inflow and outflow in reservior water in Jeonnam area(Mokpo, Suncheon, Yeosu) from January 1999 to December 1999. The results obtained were summarized as follows ; 1. The quality of the water pipe composition in the order of frequency in the quality of water pipes were Copper(45.2%)> Zinc(38.9%)> Stainless steel(9.5%)> PVC(4.8%)> PM(2.4%) in observing 42 sites. All of the drain pipes were used the cast iron quality. 2. The result of certification curve from 12 items(17kind) of VOCs was $1.0-4.0{\mu{g}}/{\ell}$ range, a coefficient of correlation was shown 0.99 over. A MDL of each substance range was within $0.1-1.0{\mu{g}}/{\ell}$. 3. The result of the assay, 5 kinds(Viny chloride, Dichloromethane, Ethylbenzene, M,P-xylene, Styrene) of the VOCs of 14 kinds was not detected and the other items were detected slightly. The detection rate of one item and over in total VOCs samples, were 25.9% in inflow and 27.9% in outflow. And frequency of detect in inflow/outflow of THM(Chloroform, Bromodichloro-methane, Dibromochloromethane, Bromoform) were shown higher than 94.1%, 97.0% each stages. It comes to the conclusion that all of the samples were reason able for drinking water standards. 4. The coefficient of correlation were reasonable, it shown 0.999 over in $0.1-1.0{\mu{g}}/{\ell}$ of a measuring range conditions of 4kinds in organic substance(Zn, Cu, Fe, Mn). 5. The results were showed suitability in 78 cases(92.9%) and unsuitability in 6 cases (7.1%), in 84 cases of in organic substances. Compare to inflow stage, mean concentrations of heavy metal, were increased slightly in Zn, Cu, Fe except Mn than outflow stage. The result of the mean concentration in organic substance inflow and outflow in the apartment water tank using Pair-compared T-test, in 95% reliance index, were $0.179mg/{\ell}(0.151-0.307mg/{\ell})$ in Zinc, $0.136mg/{\ell}(0.113-0.230mg/{\ell})$ in Copper, $0.052mg/{\ell}(0.048-0.098mg/{\ell})$ in Fe, and there was a bit growing tendency but there was no differece in Mn. 6. The mean concentration of Copper which used Cu pipe as a water supply pipe in apartment were $0.216mg/{\ell}(0.161-0.338mg/{\ell})$ in case of the Zine pipe were $0.286mg/{\ell}(0.204-0.435mg/{\ell})$. It shows that the detection rate was more higher than the other material used in Cu or Zn as the water supply pipe. We supposed to Cu and Zn substance were gushing out water supply pipe.

  • PDF

Development of WRAP-SALT for Quantitative Analysis of Water Supply Capabilities considering Water Quality (수질을 고려한 수자원 공급의 정량적 분석을 위한 WRAP-SALT 개발)

  • Lee, Chi-Hun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.58-58
    • /
    • 2011
  • The Texas Commission on Environmental Quality(TCEQ) WAM(Water Availability Modeling) System consists of the generalized Water Rights Analysis Package(WRAP) river/reservoir system water management simulation model, 22 sets of WRAP hydrology and water rights input files for the 23 river basins of Texas, geographic information system tools, and other supporting databases. The WRAP/WAM modeling system, as routinely applied since the late 1990s, has not included consideration of water quality. Recently developed WRAP-SALT(Water Rights Analysis Package) is designed primarily for computing concentration frequency statistics and supply reliability indices at locations of interest in a river system for alternative water development and management scenarios. Though motivated primarily by natural salt pollution, WRAP-SALT water quality modeling features are applicable to essentially any conservative water quality constituent. The Brazos River studies discussed in this paper focus on total dissolved solids, though the available observed data also includes chloride and sulfate which can be modeled as individual constituents. The WRAP-SALT salinity input file contains loads or concentrations of salinity inflows during each month of the hydrologic period-of-analysis and reservoir storage at the beginning of the simulation. The WRAP-SALT model computes salt loads and concentrations for each control point of a river/reservoir system for inflows and outflows during the month and end-of-month reservoir storage for each month of the hydrologic period-of-analysis, for given loads entering the system. River reaches connect control points. The mass balance algorithms proceed from upstream to downstream, with outflow from one river reach contributing to inflow to the next downstream reach. In a given month, for each control point in sequence, the inflow loads are first computed. Loads and concentrations of outflows and reservoir storage at the control point are then determined. Complete mixing during the month is assumed at locations without reservoir storage.

  • PDF

Analysis on Occurrence of the Scum in Water Treatment Plants and Its Removal by Water Spray Method (정수장(淨水場) Scum의 발생(發生) 원인분석(原因分析)과 살수에 의한 물리적(物理的) 제거효과(除去效果))

  • Yoon, Jae Heung;Choi, Gye Woon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.8 no.3
    • /
    • pp.26-33
    • /
    • 1994
  • To slove the problems by the scum, which causes operational and water quality problems in water treatment plants, several researches were conducted based on the site investigations on twelve large water treatment plants, biological and chemical analysis of scum, analyzing raw water quality data. Two types of scum, which are from scum and floe scum, can be classified based on the analysis and site investigations. The major parameter generating floe scum was indicated as fine bubbles dissolved in the water. The fine bubbles dissolved in the water can be generated by over-saturated air in the water, adding aluminum surface as the coagulant, conducting the break point pre-chlorination and so on. The water spray method, which is one of the physical treatment methods for removing scum, was selected for conducting experiments on the removal efficiency in the flocculation basin of the real water treatment plant. The water spray method was successfully applied for removing scum with the advantages of using spiral nozzles in case of using the raw water rather than the cleaned water.

  • PDF