• 제목/요약/키워드: W-doping

검색결과 194건 처리시간 0.028초

IBC형 태양전지를 위한 균일하게 증착된 비정질 실리콘 층의 광섬유 레이저를 이용한 붕소 도핑 방법 (Boron Doping Method Using Fiber Laser Annealing of Uniformly Deposited Amorphous Silicon Layer for IBC Solar Cells)

  • 김성철;윤기찬;경도현;이영석;권태영;정우원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.456-456
    • /
    • 2009
  • Boron doping on an n-type Si wafer is requisite process for IBC (Interdigitated Back Contact) solar cells. Fiber laser annealing is one of boron doping methods. For the boron doping, uniformly coated or deposited film is highly required. Plasma enhanced chemical vapor deposition (PECVD) method provides a uniform dopant film or layer which can facilitate doping. Because amorphous silicon layer absorption range for the wavelength of fiber laser does not match well for the direct annealing. In this study, to enhance thermal affection on the existing p-a-Si:H layer, a ${\mu}c$-Si:H intrinsic layer was deposited on the p-a-Si:H layer additionally by PECVD. To improve heat transfer rate to the amorphous silicon layer, and as heating both sides and protecting boron eliminating from the amorphous silicon layer. For p-a-Si:H layer with the ratio of $SiH_4$ : $B_2H_6$ : $H_2$ = 30 : 30 : 120, at $200^{\circ}C$, 50 W, 0.2 Torr for 30 minutes, and for ${\mu}c$-Si:H intrinsic layer, $SiH_4$ : $H_2$ = 10 : 300, at $200^{\circ}C$, 30 W, 0.5 Torr for 60 minutes, 2 cm $\times$ 2 cm size wafers were used. In consequence of comparing the results of lifetime measurement and sheet resistance relation, the laser condition set of 20 ~ 27 % of power, 150 ~ 160 kHz, 20 ~ 50 mm/s of marking speed, and $10\;{\sim}\;50 {\mu}m$ spacing with continuous wave mode of scanner lens showed the correlation between lifetime and sheet resistance as $100\;{\Omega}/sq$ and $11.8\;{\mu}s$ vs. $17\;{\Omega}/sq$ and $8.2\;{\mu}s$. Comparing to the singly deposited p-a-Si:H layer case, the additional ${\mu}c$-Si:H layer for doping resulted in no trade-offs, but showed slight improvement of both lifetime and sheet resistance, however sheet resistance might be confined by the additional intrinsic layer. This might come from the ineffective crystallization of amorphous silicon layer. For the additional layer case, lifetime and sheet resistance were measured as $84.8\;{\Omega}/sq$ and $11.09\;{\mu}s$ vs. $79.8\;{\Omega}/sq$ and $11.93\;{\mu}s$. The co-existence of $n^+$layeronthesamesurfaceandeliminating the laser damage should be taken into account for an IBC solar cell structure. Heavily doped uniform boron layer by fiber laser brings not only basic and essential conditions for the beginning step of IBC solar cell fabrication processes, but also the controllable doping concentration and depth that can be established according to the deposition conditions of layers.

  • PDF

Simulation on Optimum Doping Levels in Si Solar Cells

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제30권10호
    • /
    • pp.509-514
    • /
    • 2020
  • The two key variables of an Si solar cell, i.e., emitter (n-type window layer) and base (p-type substrate) doping levels or concentrations, are studied using Medici, a 2-dimensional semiconductor device simulation tool. The substrate is p-type and 150 ㎛ thick, the pn junction is 2 ㎛ from the front surface, and the cell is lit on the front surface. The doping concentration ranges from 1 × 1010 cm-3 to 1 × 1020 cm-3 for both emitter and base, resulting in a matrix of 11 by 11 or a total of 121 data points. With respect to increasing donor concentration (Nd) in the emitter, the open-circuit voltage (Voc) is little affected throughout, and the short-circuit current (Isc) is affected only at a very high levels of Nd, exceeding 1 × 1019 cm-3, dropping abruptly by about 12%, i.e., from Isc = 6.05 × 10-9 A·㎛-1, at Nd = 1 × 1019 cm-3 to Isc = 5.35 × 10-9 A·㎛-1 at Nd = 1 × 1020 cm-3, likely due to minority-carrier, or hole, recombination at the very high doping level. With respect to increasing acceptor concentration (Na) in the base, Isc is little affected throughout, but Voc increases steadily, i.e, from Voc = 0.29 V at Na = 1 × 1012 cm-3 to 0.69 V at Na = 1 × 1018 cm-3. On average, with an order increase in Na, Voc increases by about 0.07 V, likely due to narrowing of the depletion layer and lowering of the carrier recombination at the pn junction. At the maximum output power (Pmax), a peak value of 3.25 × 10-2 W·cm-2 or 32.5 mW·cm-2 is observed at the doping combination of Nd = 1 × 1019 cm-3, a level at which Si is degenerate (being metal-like), and Na = 1 × 1017 cm-3, and minimum values of near zero are observed at very low levels of Nd ≤ 1 × 1013 cm-3. This wide variation in Pmax, even within a given kind of solar cell, indicates that selecting an optimal combination of donor and acceptor doping concentrations is likely most important in solar cell engineering.

박막 전지용 Pt 도핑 비정질 산화바나듐의 구조적 변화 (Structure Evolution of Pt doped Amorphous ${V_2}{O_5}$Cathode Film for Thin Film Battery)

  • 김한기;전은정;옥영우;성태연;조원일;윤영수
    • 한국전기전자재료학회논문지
    • /
    • 제13권9호
    • /
    • pp.751-757
    • /
    • 2000
  • The r.f. power effect for Pt doping is investigated on structural and electrochemical properties of amorphous vanadium oxide(V$_2$O$_{5}$) film, grown by direct current (d.c.) magnetron sputtering. Room temperature charge-discharge measurements based on a half-cell with a constant current clearly indicated that the Pt doping could improve the cyclibility of V$_2$O$_{5}$ cathode film. Using glancing angle x-ray diffraction(GXRD) and high-resolution transmission electron microscopy (HRTEM) analysis, we found that the Pt doping with 10W r.f. power induces more random amorphous structure than undoped V$_2$O$_{5}$ film. As the r.f. power of Pt target increases. large amount of Pt atoms incorporates into the amorphous V$_2$O$_{5}$ film and makes $\alpha$-PtO$_2$microcrystalline phase in the amorphous V$_2$O$_{5}$ matrix. These results suggest that the semiconducting $\alpha$-PtO$_2$ microcrystalline phase in amorphous matrix lead to a drastically faded cyclibility of 50W Pt doped V$_2$O$_{5}$ cathode film. Possible explanations are given to describe the Pt doping effect on cyclibillity of the amorphous V$_2$O$_{5}$ cathode film battery. film battery.

  • PDF

Phosphorus doping in silicon thin films using a two - zone diffusion method

  • Hwang, M.W.;Um, M.Y.;Kim, Y.H.;Lee, S.K.;Kim, H.J.;Park, W.Y.
    • Journal of Korean Vacuum Science & Technology
    • /
    • 제4권3호
    • /
    • pp.73-77
    • /
    • 2000
  • Single crystal and polycrystalline Si thin films were doped with phosphorus by a 2-zone diffusion method to develop the low-resistivity polycrystalline Si electrode for a hemispherical grain. Solid phosphorus source was used in order to achieve uniformly and highly doped surface region of polycrystalline Si films having rough surface morphology. In case of 2-zone diffusion method, it is proved that the heavy doping near the surface area can be achieved even at a relatively low temperature. SIMS analysis revealed that phosphorus doping concentration in case of using solid P as a doping source was about 50 times as that of phosphine source at 750$^{\circ}C$. Also, ASR analysis revealed that the carrier concentration was about 50 times as that of phosphine. In order to evaluate the electrical characteristics of doped polycrystalline Si films for semiconductor devices, MOS capacitors were fabricated to measure capacitance of polycrystalline Si films. In ${\pm}$2 V measuring condition, Si films, doped with solid source, have 8% higher $C_{min}$ than that of unadditional doped Si films and 3% higher $C_{min}$ than that of Si films doped with $PH_3$ source. The leakage current of these films was a few fA/${\mu}m^2$. As a result, a 2-zone diffusion method is suggested as an effective method to achieve highly doped polycrystalline Si films even at low temperature.

  • PDF

박형웨이퍼를 사용한 결정질 태양전지의 PC1D를 이용한 최적화

  • 임태규;정우원;이준신
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 추계학술대회 논문집
    • /
    • pp.38-38
    • /
    • 2009
  • Wafer thickness of crystalline silicon is an important factor which decides a price of solar cell. PC1D was used to fix a condition that is required to get a high efficiency in a crystalline silicon solar cell using thin wafer($150{\mu}m$). In this simulation, base resistivity and emitter doping concentration were used as variables. As a result of the simulation, $V_{oc}$=0.6338(V), $I_{sc}$=5.565(A), $P_{max}$=2.674(W), FF=0.76 and efficiency 17.516(%) were obtained when emitter doping concentration is $5{\times}10^{20}cm^{-3}$, depth factor is 0.04 and sheet resistance is $79.76{\Omega}/square$.

  • PDF

Design Optimization of Silicon-based Junctionless Fin-type Field-Effect Transistors for Low Standby Power Technology

  • Seo, Jae Hwa;Yuan, Heng;Kang, In Man
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권6호
    • /
    • pp.1497-1502
    • /
    • 2013
  • Recently, the junctionless (JL) transistors realized by a single-type doping process have attracted attention instead of the conventional metal-oxide-semiconductor field-effect transistors (MOSFET). The JL transistor can overcome MOSFET's problems such as the thermal budget and short-channel effect. Thus, the JL transistor is considered as great alternative device for a next generation low standby power silicon system. In this paper, the JL FinFET was simulated with a three dimensional (3D) technology computer-aided design (TCAD) simulator and optimized for DC characteristics according to device dimension and doping concentration. The design variables were the fin width ($W_{fin}$), fin height ($H_{fin}$), and doping concentration ($D_{ch}$). After the optimization of DC characteristics, RF characteristics of JL FinFET were also extracted.

DCJTB를 Doping한 적색 유기 발광소자의 특성 (Characteristics of the red organic electroluminescect devices doped with DCJTB)

  • 최완지;임민수;정득영;이정구;임기조
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2002년도 하계학술대회 논문집 Vol.3 No.2
    • /
    • pp.1034-1037
    • /
    • 2002
  • In this study, we fabricated red organic electrolu-minescent device with a doping material (DCJTB), and The cell structure used ITO:indium tin oxide $[20{\Omega}]$/CuPc:Hole injection layer 20nm/NPB: Hole transfer layer 40nm/$Alq_3$ (host) + DCJTB(1% or 3%) (guest) Emitting layer 40nm/$Alq_3$ : Electron transfer layer 30nm/Al :Cathode layer 150nm. the luminescent layer consisted of a host material. 8-hydrozyquinoline aluminum $(Alq_3)$, and DCJTB dye as the dopant. a stable red emission (chromaticity coordinates : x=0.64, y=0.36) was obtained in this cell with the luminance range of $100-600cd/m^2$. we study the electrical and optical properties of devices.

  • PDF

Highly Efficient Simple-Structure Red Phosphorescent OLEDs with an Extremely Low Doping Technology

  • Jeon, Woo-Sik;Park, Tae-Jin;Kwon, Jang-Hyuk
    • Journal of Information Display
    • /
    • 제10권2호
    • /
    • pp.87-91
    • /
    • 2009
  • Highly efficient red phosphorescent OLEDs (PHOLEDs) with a simple, organic, triple-layer structure was developed using the narrow-bandgap fluorescent host material bis(10-hydroxybenzo[h] quinolinato)beryllium complex (Bebq2) and the deep-red dopant tris(1-phenylisoquinoline)iridium (Ir(piq)3). The maximum current and power efficiency values of 12.71 cd/A and 16.02 lm/W, respectively, with an extremely low doping technology of 1%, are demonstrated herein. The results reveal a practical, cost-saving host dopant system for the fabrication of highly efficient PHOLEDs involving the simple structure presented herein, with a reduction of expensive Ir dopants.