# **Design Optimization of Silicon-based Junctionless Fin-type Field-Effect Transistors for Low Standby Power Technology**

## Jae Hwa Seo\*, Heng Yuan\*\* and In Man Kang<sup>†</sup>

**Abstract** – Recently, the junctionless (JL) transistors realized by a single-type doping process have attracted attention instead of the conventional metal-oxide-semiconductor field-effect transistors (MOSFET). The JL transistor can overcome MOSFET's problems such as the thermal budget and short-channel effect. Thus, the JL transistor is considered as great alternative device for a next generation low standby power silicon system. In this paper, the JL FinFET was simulated with a three dimensional (3D) technology computer-aided design (TCAD) simulator and optimized for DC characteristics according to device dimension and doping concentration. The design variables were the fin width ( $W_{\rm fin}$ ), fin height ( $H_{\rm fin}$ ), and doping concentration ( $D_{\rm ch}$ ). After the optimization of DC characteristics, RF characteristics of JL FinFET were also extracted.

Keywords: Junctionless, FinFET, Radio frequency, TCAD

#### 1. Introduction

These days, semiconductor devices based on a silicon substrate are being developed for better electrical characteristics and cost-efficiency. However, conventional silicon-based metal-oxide-semiconductor field-effect transistor (MOSFET) technologies are faced with their scaling limit as transistor size continues to decrease [1-4]. Thus, instead of traditional n/p/n or p/n/p MOSFET, many studies for the junctionless (JL) MOSFET have been reported. The JL MOSFET was originally proposed and demonstrated by Colinge et al [5-6]. This transistor, which has no pn junctions, operates in accumulation mode (AM) and a degenerate p-type polysilicon gate is used for adjusting threshold voltage to be positive so that its operations are same as the conventional n-type MOSFET. But unlike the conventional short-channel MOSFET need to make highly precise junctions, the JL MOSFETs do not need to form junctions. Thus, the JL MOSFET can overcome many fabrication issues in view of doping techniques and thermal budget without short-channel effects (SCEs) [7-11].

In this paper, design optimization of the JL MOSFET which have a fin-type structure (JL FinFET) is performed in view of threshold voltage ( $V_{\rm th}$ ), higher gate controllability, enhanced current drivability, and better subthreshold swing (SS). The device was designed with a Silvaco three-dimensional (3D) technology computer-aided design (TCAD) simulation program [12] and the

Received: May 21, 2013; Accepted: June 27, 2013

optimization reference of this work is the low standby power technology (LSPT) performances of international technology roadmap for semiconductors (ITRS) roadmap [13]. Also, to obtain accurate results for simulations, electron concentration model, electron-field model, gate current assignment model, and 3D-structure mobility model is considered [12]. Finally, the important parameters such as transconductance ( $g_m$ ), cut-off frequency ( $f_T$ ), and maximum oscillation frequency ( $f_{max}$ ) are extracted after an optimization process for DC performances.

## 2. Simulation Results

Fig. 1 shows the structure of JL FinFET with 20 nm channel length ( $L_{ch}$ ) simulated by the 3D TCAD program. To avoid polysilicon gate depletion, a degenerately doped polysilicon gate was adopted. The gate dielectric material is hafnium oxide (HfO<sub>2</sub>) with 2 nm thickness ( $t_{ox}$ ).



Fig. 1. The structure of JL FinFET with 20 nm channel length  $(L_{ch})$  simulated by the 3D TCAD program.

<sup>†</sup> Corresponding Author: School of Electronics Engineering, Kyungpook National University, Korea. (imkang@ee.knu.ac.kr)

School of Electronics Engineering, Kyungpook National University, Korea. (ihseo@ee.knu.ac.kr)

<sup>\*\*</sup> School of Instrumentation Science and Optoelectronics Engineering, Beihang University, China. (yuanheng1981@hotmail.com)

The on-state current  $(I_{on})$  was defined as a drain current  $(I_{DS})$  at  $V_{GS} = V_{DS} = 1$  V and the off-state current  $(I_{off})$  was defined as an point of  $V_{GS}$  where  $I_{DS}$  begins to burst. The  $V_{th}$  was defined as  $V_{GS}$  at  $I_{DS} = 10^{-7}$  A/µm.

The current of JL MOSFET is dominated by body current instead of surface current between gate oxide and inversion channel layer. Therefore, the channel doping concentration ( $D_{ch}$ ), fin height ( $H_{fin}$ ), and fin width ( $W_{fin}$ ) which are important variables for device optimization process are designated as the simulation variables. Fig. 2 shows the  $I_{DS}$ - $V_{GS}$  transfer curves for JL FinFET with various channel doping concentration.  $D_{ch}$  was changed ntype  $1 \times 10^{18}$  cm<sup>-3</sup> to  $4 \times 10^{19}$  cm<sup>-3</sup>. Both  $H_{fin}$  and  $W_{fin}$  are fixed at 10 nm. When the  $D_{ch}$  increases,  $V_{th}$  goes decrease and  $I_{on}$  as well as  $I_{off}$  is increases. The  $V_{th}$  is changed by depletion layer of channel region. The relationship between  $D_{ch}$  and depletion layer for MOS structure is presented by (1) [14].

$$W_{\rm d} = \sqrt{\frac{2\varepsilon_{\rm s}\Phi_{\rm bi}}{qD_{\rm ch}}} \tag{1}$$

where  $\varepsilon_{\rm s}$  is the semiconductor permittivity,  $\Phi_{\rm bi}$  is the built in potential and q is the electric potential.



**Fig. 2.** *I*<sub>DS</sub>-*V*<sub>GS</sub> transfer curves for JL FinFET with various channel doping concentration.



**Fig. 3.**  $V_{\rm th}$  curves as a function of  $D_{\rm ch}$ .

The width of depletion region  $(W_d)$  is reduced by increase of  $D_{ch}$ . JL devices are dominated not by surface current but by body current. Therefore, the high  $N_{ch}$  makes it difficult to fully deplete under the gate and  $V_{th}$  is decreased. The characteristics of  $V_{th}$  according to  $D_{ch}$  are summarized in Fig. 3.

Fig. 3 shows  $V_{\text{th}}$  as a function of  $D_{\text{ch}}$ . It is confirmed that  $V_{\text{th}}$  appears to be a negative linear function of  $D_{\text{ch}}$ . The horizontal slashed area is the section of  $V_{\text{th}}$  due to the LSPT operation reference suggested by the ITRS Roadmap, and its vicinity with ±0.1 V. The vertical slashed area represents the range of  $D_{\text{ch}}$  satisfying  $V_{\text{th}}$  reference range. The corresponding  $D_{\text{ch}}$  range to the  $V_{\text{th}}$  is  $2.3 \times 10^{19} \text{ cm}^{-3}$  to  $3 \times 10^{19} \text{ cm}^{-3}$ .

Fig. 4 demonstrates the detailed graph for on- and offstate current for the range of the optimized  $D_{ch}$  range of Fig. 3. The current level of JL FinFET has lower limit of  $I_{on}$ (500  $\mu$ A/ $\mu$ m) and upper limit of  $I_{off}$  (10 pA/ $\mu$ m) for dependable LSPT operations. The  $I_{on}$  and  $I_{off}$  increased by changes of bulk driving current and leakage current that was caused by decrease of  $W_d$ , respectively. It turns out that the permissible  $D_{ch}$  satisfied with  $V_{th}$ ,  $I_{on}$ , and  $I_{off}$  level is vicinity of  $2.7 \times 10^{19}$  cm<sup>-3</sup>.

Fig. 5 depicts the subthreshold swing (SS) as a function



Fig. 4. On-state current and off-state current at the optimized  $D_{ch}$  range.



Fig. 5. Subthreshold swing (SS) as a function of  $D_{ch}$ .

of  $D_{ch}$ . 69 mV/dec to 71 mV/dec SS characteristics are observed over  $D_{ch}$  region and the vicinity of  $2.7 \times 10^{19}$  cm<sup>-3</sup> where the point of SS reflection should be desirable at channel doping concentration. The values of SS has the minimum variation near  $D_{ch} = 2.7 \times 10^{19} \text{ cm}^{-3}$ . Fig. 6 demonstrates the IDS-VGS transfer curves for JL FinFET according to various  $W_{\text{fin}}$ . As  $W_{\text{fin}}$  increases, the channel region where electrons flow is distends and I<sub>on</sub> increases. However, the large  $W_{\text{fin}}$  makes hard to fully deplete channel region at an off-state. Accordingly, the Ioff increases dramatically. The difference of electron concentration under the off-state with  $W_{\text{fin}}$  of 5 nm and  $W_{\text{fin}}$  of 20 nm is depicts at Fig. 7. The maximum electron concentration of channel region was obtained 1.61 cm<sup>-3</sup> and 12.9 cm<sup>-3</sup>, respectively, at  $W_{\text{fin}}$  of 5 nm and  $W_{\text{fin}}$  of 20 nm. It indicates that the increase of  $W_{\rm fin}$  makes difficult to control the  $I_{\rm off.}$ 

Fig. 8 shows the changes of SS and  $V_{\rm th}$  with different  $W_{\rm fin}$ . When  $W_{\rm fin}$  increases, transistor needs less gate voltages to achieve turn-on condition and consequentially,  $V_{\rm th}$  decreases. On the other hand, SS shows increasing



**Fig. 6.**  $I_{DS}$ - $V_{GS}$  transfer curves for JL FinFET according to various  $W_{fin}$ .



Fig. 7. Electron concentration under the off-state for JL FinFETs with (a)  $W_{\text{fin}}$  of 5 nm and (b)  $W_{\text{fin}}$  of 20 nm.  $(D_{\text{ch}} = 2.7 \times 10^{19} \text{ cm}^{-3}, V_{\text{DS}} = -1 \text{ V})$ 

results because a variation of  $I_{\text{off}}$  is much higher than variation of  $I_{\text{on}}$ . By the LSPT operation range of  $V_{\text{th}}$ , the  $W_{\text{fin}}$  of 6 nm to 10 nm is suggested as an optimized parameter.

Fig. 9 is the  $I_{DS}$ - $V_{GS}$  transfer curves for JL FinFET



**Fig. 8.** SS and  $V_{\rm th}$  curves with different  $W_{\rm fin}$ .



Fig. 9.  $I_{DS}$ - $V_{GS}$  transfer curves for JL FinFET according to various  $H_{fin}$ .



Fig. 10. Electron concentration at (a) high  $W_{\rm fin}$ =20 nm and (b) high  $H_{\rm fin}$ =20 nm under the off-state. ( $D_{\rm ch}$ = 2.7×10<sup>19</sup> cm<sup>-3</sup>,  $V_{\rm DS}$  = -1 V)

according to various  $H_{\text{fin}}$ . The increase of  $H_{\text{fin}}$  also increases the channel region that current flows. However, the changes of  $H_{\text{fin}}$  are less vulnerable to  $I_{\text{off}}$  than that of  $W_{\text{fin}}$ . Although the increase of  $H_{\text{fin}}$  increases  $I_{\text{off}}$ , the Finside depletion area is fastened by fixed  $W_{\text{fin}}$ . It can be observed at Fig. 10 which shows electron concentration of high  $W_{\text{fin}}$  and high  $H_{\text{fin}}$  under the off-state. In this figure, it is confirmed that low  $H_{\text{fin}}$  of JL FinFET is easier to deplete all channel area and  $I_{\text{off}}$  should be much lower. Fig. 11 depicts the changes of SS and  $V_{\text{th}}$  with different  $H_{\text{fin}}$ . The  $V_{\text{th}}$  and SS are in inverse proportion to the  $H_{\text{fin}}$ . And by the LSPT operation range of  $V_{\text{th}}$ , the  $H_{\text{fin}}$  of 10 nm where has an minimum value of SS is the optimized result of  $H_{\text{fin}}$ .

Fig. 12 show the main conductance characteristics of optimized JL FinFET with  $D_{ch}$  of  $2.7 \times 10^{19} \text{ cm}^{-3}$ ,  $W_{fin}$  of 10 nm, and  $H_{fin}$  of 10 nm. The transconductance  $(g_m)$  and source-drain conductance  $(g_{ds})$  determine the cut-off frequency  $(f_T)$  and maximum oscillation frequency  $(f_{max})$  by following equations (2) and (3) [15].



Fig. 11. SS and  $V_{\rm th}$  curves with different  $H_{\rm fin}$ .



Fig. 12. The transconductance  $(g_m)$  and source-drain conductance  $(g_{ds})$  characteristics of an optimized JL FinFET with  $D_{ch}$  of  $2.7 \times 10^{19}$  cm<sup>-3</sup>,  $W_{fin}$  of 10 nm, and  $H_{fin}$  of 10 nm.

$$f_{\rm T} = \frac{g_{\rm m}}{2\pi C_{\rm gg}} \tag{2}$$

$$f_{\rm max} \approx \frac{f_{\rm T}}{\sqrt{4R_{\rm g,eff}(g_{\rm ds} + 2\pi f_{\rm T}C_{\rm gd})}}$$
(3)

where  $g_{\rm m}$  is the transconductance,  $C_{\rm gg}$  is the gate input capacitance,  $R_{\rm g, eff}$  is the effective gate resistance comprising gate electrode resistance and distributed channel resistance, and  $C_{\rm gd}$  is the gate-to-drain capacitance.



Fig. 13. (a) Capacitance and (b) resistance of optimized JL FinFET. (c)  $f_{\rm T}$  and  $f_{\rm max}$  as a function of  $V_{\rm GS}$ . In both  $f_{\rm T}$  and  $f_{\rm max}$  are monotonically increases with voltages.



Fig. 14.IDS-VGS transfer curves for optimized JL FinFET and characteristics of DIBL.

 Table 1. Optimized device performances and conditions summary

| Channel Length (Lch)                  | 20 nm                             |
|---------------------------------------|-----------------------------------|
| Fin Width (Wfin)                      | 10 nm                             |
| Fin Height (Hfin)                     | 10 nm                             |
| Channel Doping Concentration (Dch)    | $2.7 \times 10^{19}$ cm-3         |
| Threshold Voltage (Vth)               | 0.3 V                             |
| On-state Current (Ion)                | 397A/m                            |
| Off-state Current (Ioff)              | $1.32 \times 10^{18} \text{ A/m}$ |
| Subthreshold Swing (SS)               | 67.3 mV/dec                       |
| Current Gain Cut-off Frequency (fT)   | 213.3 GHz                         |
| Maximum Oscillation Frequency (fmax)  | 366.6 GHz                         |
| Drain-induced barrier lowering (DIBL) | 56 mV/V                           |

Equation 2, it is known that to achieve high  $f_{\rm T}$ , the large value of  $g_{\rm m}$  should be needed. In Fig. 12, both  $g_{\rm m}$  and  $g_{\rm ds}$  increases and saturations near  $V_{\rm GS} = 0.5$  V. Thus, a desirable operation conditions to guarantee high  $f_{\rm T}$  should be  $V_{\rm GS} > 0.5$  V.

Figs. 13 (a) and (b) shows the capacitance and resistance of optimized JL FinFET. These characteristics are related with  $f_{\rm T}$  and  $f_{\rm max}$  which expressed by equations (2) and (b). Fig. 13 (c) depicts the  $f_{\rm T}$  and  $f_{\rm max}$  as a function of  $V_{\rm GS}$ . In both  $f_{\rm T}$  and  $f_{\rm max}$  are monotonically increases with voltages. The  $f_{\rm T}$  and  $f_{\rm max}$  was obtained 213.3 GHz and 366.6 GHz respectively at  $V_{\rm GS} = V_{\rm DS} = 1$  V where an operation point.

Fig. 14 demonstrates the drain-induced barrier lowering (DIBL) characteristics of optimized JL FinFET. In terms of suppress SCEs (SS  $\leq$  100 mV/dec, DIBL  $\leq$  100 mV/V) [16], the optimized JL FinFET is efficiently satisfying these conditions.

## 5. Conclusion

In this paper, we have been performed 3D TCAD simulation of JL FinFET and confirmed the device performances. The JL FinFET is suitable semiconductor devices with LSPT applications and the optimum design of transistor was satisfying the requirement of ITRS roadmap. To optimize the JL FinFET, various DC parameters

including  $V_{\text{th}}$ ,  $I_{\text{onf}}$ ,  $I_{\text{off}}$ , SS, and  $g_{\text{m}}$  was considered. Through the simulation result, the optimum design conditions of JL FinFET with  $L_{\text{ch}}$  of 20 nm and  $t_{\text{ox}}$  of 2nm were as follows:  $D_{\text{ch}}$  of  $2.7 \times 10^{19} \text{ cm}^{-3}$ ,  $W_{\text{fin}}$  of  $6 \sim 10$  nm, and  $H_{\text{fin}}$  of under 10 nm. Finally, under the condition which  $D_{\text{ch}}$  of  $2.7 \times 10^{19} \text{ cm}^{-3}$ ,  $W_{\text{fin}}$  of 10 nm, and  $H_{\text{fin}}$  of 10 nm, the  $f_{\text{T}}$  and  $f_{\text{max}}$  were obtained as 213.3 GHz and 366.6 GHz respectively. Consequently, the optimized JL FinFET can be a promising structure of next-generation silicon-based LSPT transistors.

### Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (MEST) (No. 2013-011522).

#### References

- Hong Xiao, Introduction to Semiconductor Manufacturing Technology, Prentice Hall, New Jersey, 2001, pp. 150-157.
- [2] Chenming Hu, "Device challenges and opportunities," *in Proceeding of 2004 VLSI Symp. Tech. Dig*, Hsinchu, Taiwan, June 2004.
- [3] Yuan Taur and Tak H. Ning, *Fundamentals of Modern VLSI Devices*, Cambridge University Press, New York, 1998, pp. 164-167.
- [4] Yiming Li, Chih-Hong Hwang, Tien-Yeh Li, Ming-Hung Han, "Process-Variation Effect, Metal-Gate Work-Function Fluctuation, and Random-Dopant Fluctuation in Emerging CMOS Technologies," *IEEE Trans. on Electron Devices*, Vol. 57, No. 2, pp.437-447, Fab. 2010.
- [5] Jean-Pierre Colinge, Chi-Woo Lee, Aryan Afzalian, Nima Dehdashti Akhavan, Ran Yan, Isabelle Ferain, Pedram Razavi, Brendan O'Neill, Alan Blake, Mary White, Anne-Marie Kelleher, Brendan McCarthy and Richard Murphy, "Nanowire transistors without junctions," *Nature Nanotechnology*, Vol. 5, No. 3, pp. 225-229, Mar. 2010.
- [6] Chi-Woo Lee, Aryan Afzalian, Nima Dehdashti Akhavan, Ran Yan, Isabelle Ferain, and Jean-Pierre Colinge, "Junctionless multigate field-effect transistor," *Appl. Phys. Lett.*, Vol. 94, 053511, 2009.
- [7] Chi-Woo Lee, Adrien Borne, Isabelle Ferain, Aryan Afzalian, Ran Yan, Nima Dehdashti Akhavan, Pedram Razavi, and Jean-Pierre Colinge, "High-Temperature Performance of Silicon Junctionless MOSFETs," *IEEE Trans. on Electron Devices*, Vol. 57, No. 3, pp. 620-625, Mar. 2010.
- [8] Rodrigo Trevisoli Doria, Marcelo Antonio Pavanello,

Design Optimization of Silicon-based Junctionless Fin-type Field-Effect Transistors for Low Standby Power Technology

Renan Doria Trevisoli, Michelly de Souza, Chi-Woo Lee, Isabelle Ferain, Nima Dehdashti Akhavan, Ran Yan, Pedram Razavi, Ran Yu, Abhinav Kranti, and Jean-Pierre Colinge, "Junctionless Multiple-Gate Transistors for Analog Applications," *IEEE Trans. on Electron Devices*, Vol. 58, No. 8, pp. 2511-2519, Aug. 2011.

- [9] Chi-Woo Lee, Alexei N. Nazarov, Isabelle Ferain, Nima Dehdashti Akhavan, Ran Yan, Pedram Razavi, Ran Yu, Rodrigo T. Doria, and Jean-Pierre Colinge, "Low subthreshold slope in junctionless multigate transistors," *Appl. Phys. Lett.*, Vol. 96, 102106, 2010.
- [10] Lida Ansari, Baruch Feldman, Giorgos Fagas, Jean-Pierre Colinge, and James C. Greer, "Simulation of junctionless Si nanowire transistors with 3 nm gate length," *Appl. Phys. Lett.*, Vol. 97, 062105, 2010.
- [11] Chi-Woo Lee, Aryan Afzalian, Nima Dehdashti Akhavan, Ran Yan, Isabelle Ferain, and Jean-Pierre Colinge, "Junctionless multigate field-effect transistor," *Appl. Phys. Lett.*, Vol. 94, 053511, 2009.
- [12] SILVACO International, ATLAS User's Manual 2012
- [13] 2012 International Technology Roadmap for Semiconductors (ITRS), Online Link available at http:// www.itrs.net/Links/2012ITRS/Home2012.htm
- [14] Ben Streetman and Sanjay Banerjee, Solid State Electronic Devices, Prentice Hall, New York, 2006, pp. 144-315.
- [15] Y. Tsividis, Operation and Modeling of the MOS Transistor, Oxford Univ. Press, New York, 1999, pp. 467-491.
- [16] J.-P. Colinge, *Silicon-On-Insulator Technology : Materials to VLSI*, Springer, New York, 2004.



Jae Hwa Seo He received the B.S. degree in electrical engineering from the School of Electronics Engineering, Kyungpook National University (KNU), Daegu, Korea, in 2012. He is currently working toward the M.S. degree in electrical engineering with the School of Electronics Engineering (SEE),

Kyungpook National University (KNU). His research interests include design, fabrication, and characterization of nanoscale CMOS, tunneling FET, III-V compound transistors, and junctionless silicon devices.



Heng Yuan He received his B.S. degree in College of Information and Electrical Engineering, Shandong University of Science and Technology, China, in 2003. And the Ph.D. degree in School of Electrical Engineering and Computer Science (EECS), Kyungpook National University (KNU),

Daegu, Korea, in 2013. In 2013, he joined Beihang University (BUAA) as a associate professor. His research activities include nanodevice, inertial sensors, magnetic sensors, and atomic spin effect.



**In Man Kang** He received the B.S. degree in electronic and electrical engineering from School of Electronics and Electrical Engineering, Kyungpook National University (KNU), Daegu, Korea, in 2001, and the Ph.D. degree in electrical engineering from School of Electrical Engineering and Computer

Science (EECS), Seoul National University (SNU), Seoul, Korea, in 2007. He worked as a teaching assistant for semiconductor process education from 2001 to 2006 at Inter-university Semiconductor Research Center (ISRC) in SNU. From 2007 to 2010, he worked as a senior engineer at Design Technology Team of Samsung Electronics Company. In 2010, he joined KNU as a full-time lecturer of the School of Electronics Engineering (SEE). Now, he has worked as an assistant professor. His current research interests include CMOS RF modeling, silicon nanowire devices, tunneling transistor, low-power nano CMOS, and III-V compound semiconductors. He is a member of IEEE EDS