Effect of Sm Doping on Superconducting Properties of Y-123 Films Prepared by the MOD-TFA Process

W. J. Jung^a, B. J. Kim^a, S. W. Lim^a, J. H. Ahn^a, H. S. Choi^a, H. G. Lee^a, G. W. Hong^a, S. I. Yoo^{*, b}, J. M. Yoo^c

^a Korea Polytechnic University, Shiheung city, Korea

b School of Materials Science and Engineering, Seoul National University, Seoul, Korea Superconducting Materials Laboratory, Korea Institute of Machinery and Materials

 $(Y_{1-x}, Sm_x)Ba_2Cu_3O_{7-x}(x=0 \sim 1)$ films have been prepared on LaAlO₃ (100) single-crystal substrates by the metalorganic deposition of trifluoroacetate precursors (MOD-TFA). The films showed superconductivity with the Tc above the boiling point of liquid nitrogen ranging $87 \sim 92.5$ K regardless of Sm content. YBCO and SmBCO TFA precursor solutions using Y-, Sm-, Ba-, Cu-acetates were prepared separately and mixed to the desired doping content. The films were calcined to the temperature of 400° C in pure O_2 atmosphere followed by the high temperature annealing in the range of $750 - 800^{\circ}$ C in an atmosphere of 100 ppm O_2 containing Ar with moisture. The dependence of Sm content on the microstructure and evolution of superconducting 123 phase, and magnetic field dependence of superconducting properties will be discussed.

Acknowledgement

This research was supported by a grant from Center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology, Republic of Korea