• Title/Summary/Keyword: W-N thin film

Search Result 303, Processing Time 0.029 seconds

Ultraviolet Photodetection Properties of ZnO/Si Heterojunction Diodes Fabricated by ALD Technique Without Using a Buffer Layer

  • Hazra, Purnima;Singh, S.K.;Jit, S.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.117-123
    • /
    • 2014
  • The fabrication and characterization of a Si/ZnO thin film heterojunction ultraviolet photodiode has been presented in this paper. ZnO thin film of ~100 nm thick was deposited on <100> Silicon (Si) wafer by atomic layer deposition (ALD) technique. The Photoluminescence spectroscopy confirms that as-deposited ZnO thin film has excellent visible-blind UV response with almost no defects in the visible region. The room temperature current-voltage characteristics of the n-ZnO thin film/p-Si photodiodes are measured under an UV illumination of $650{\mu}W$ at 365 nm in the applied voltage range of ${\pm}2V$. The current-voltage characteristics demonstrate an excellent UV photoresponse of the device in its reverse bias operation with a contrast ratio of ~ 1115 and responsivity of ~0.075 A/W at 2 V reverse bias voltage.

Diffusion Barrier Properties of W-C-N Thin Film between La0.67Sr0.33MnO3 and Si

  • So, J.S.;Kim, S.Y.;Kang, K.B.;Song, M.K.;Lee, C.W.
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.2
    • /
    • pp.130-132
    • /
    • 2005
  • Tungsten carbon nitride (W-C-N) thin films were produced by reactive radio frequency (RF) magnetron sputter-ing of tungsten in $Ar-N_2$ gas mixture. The effects of the variation of nitrogen partial pressure on the composition, and structural properties of these films as well as the influence of post-deposition annealing have been studied. When $La_{0.67}Sr_{0.33}MnO_3$ was coated on the W-C-N/Si substrate, coercivity ($H_c$) and magnetization at room temperature shows 58.73 Oe, and 29.4 emu/cc, respectively. In order to improve the diffusion barrier characteristics, we have studied the impurity behaviors to control the ratios of nitrogen and carbon concentrations.

MOCVD를 이용한 $BiSbTe_3$ 박막성장 및 열전소자 제작

  • Kwon, Sung-Do;Yoon, Seok-Jin;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.425-425
    • /
    • 2008
  • Bismuth-antimony-telluride based thermoelectric thin film materials were prepared by metal organic vapor phase deposition using trimethylbismuth, triethylantimony and diisopropyltelluride as metal organic sources. A planar type thermoelectric device has been fabricated using p-type $Bi_{0.4}Sb_{1.6}Te_3$ and n-type $Bi_2Te_3$ thin films. Firstly, the p-type thermoelectric element was patterned after growth of $4{\mu}m$ thickness of $Bi_{0.4}Sb_{1.6}Te_3$ layer. Again n-type $Bi_2Te_3$ film was grown onto the patterned p-type thermoelectric film and n-type strips are formed by using selective chemical etchant for $Bi_2Te_3$. The top electrical connector was formed by thermally deposited metal film. The generator consists of 20 pairs of p- and n-type legs. We demonstrate complex structures of different conduction types of thermoelectric element on same substrate by two separate runs of MOCVD with etch-stop layer and selective etchant for n-type thermoelectric material. Device performance was evaluated on a number of thermoelectric devices. To demonstrate power generation, one side of the device was heated by heating block and the voltage output was measured. The highest estimated power of 1.3mW is obtained at the temperature difference of 45K. We provide a promising approach for fabricating thin film thermoelectric generators by using MOCVD grown thermoelectric materials which can employ nanostructures for high thermoelectric properties.

  • PDF

Development of Plasma Assisted ALD equipment and electrical characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan-Woo;kim Kyoung-Min;Yang Chung-Mo;Park Seong-Guen;Na Kyoung-Il;Lee Jung-Hee;Lee Jong-Hyun
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2005.05a
    • /
    • pp.139-145
    • /
    • 2005
  • In the study, in order to deposit TaN thin film using diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristic of TaN thin films deposited PAALD method, PAALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamlno) tantalum) Precursor and $NH_3$ reaction gas is aware that TaN thin film deposited of high density and amorphous phase with XRD measurement The degree of diffusion and react ion taking place in Cu/TaN(deposited using 150 W PAALD)/$SiO_2$/Si systems with increasing annealing temperature was estimated from MOS capacitor property and the $SiO_2(600\;\AA)$/Si system surface analysis by C-V measurement and secondary ion material spectrometer(SIMS) after Cu/TaN/$SiO_2(400\;\AA)$ system etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to $500^{\circ}C$.

  • PDF

Development of Plasma Assisted ALD equipment and Electrical Characteristic of TaN thin film deposited PAALD method (Plasma Assisted ALD 장비 계발과 PAALD법으로 증착 된 TaN 박막의 전기적 특성)

  • Do Kwan Woo;Kim Kyoung Min;Yang Chung Mo;Park Seong Guen;Na Kyoung Il;Lee Jung Hee;Lee Jong Hyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.4 no.2 s.11
    • /
    • pp.39-43
    • /
    • 2005
  • In the study, in order to deposit TaN thin film for diffusion barrier and bottom electrode we made the Plasma Assisted ALD equipment and confirmed the electrical characteristics of TaN thin films grown PAALD method. Plasma Assisted ALD equipment depositing TaN thin film using PEMAT(pentakis(ethylmethlyamino) tantalum) precursor and NH3 reaction gas is shown that TaN thin film deposited high density and amorphous phase with XRD measurement. The degree of diffusion and reaction taking place in Cu/TaN (deposited using 150W PAALD)/$SiO_{2}$/Si systems with increasing annealing temperature was estimated for MOS capacitor property and the $SiO_{2}$, (600${\AA}$)/Si system surface analysis by C-V measurement and secondary ion material spectrometer (SIMS) after Cu/TaN/$SiO_{2}$ (400 ${\AA}$) layer etching. TaN thin film deposited PAALD method diffusion barrier have a good diffusion barrier property up to 500$^{\circ}C$.

  • PDF

MOCVD Deposition of AlN Thin Film for Packaging Materials

  • Chang-Kyu, Ahna;Seung-Chul Choi;Seong-Hoon Cho;Sung-Hwan Han;Je-Hong Kyoung
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2000.04a
    • /
    • pp.118-118
    • /
    • 2000
  • New single-source precursor, [AlCI3:NH2tBu] was synthesized for AlN thin f film processing with AICI3 (Aluminum Chloride) and tBuNH2 (tert-butylamine). AlN thin films for packaging aspplication were deposited on sapphire substrate by a atmosph하ie-pressure MOCVD. In most of other study methyl-based AI precursors w were used for source, But herein Aluminum Chloride was used for as AI source i in order to prevent the carbon contamination in the films and stabilize the p precursor. New precursor showed the very high gas vapor pressure so it allowed to m make the film under atmospheric-pressure and get the high purified film. High q quality AlN thin film was obtained at 700 to $900^{\circ}C$. The new precursor was p purified by a sublimation technique and help to fabricate high purity film. It s showed high vapor pressure, which is able to a critieal factor for the high purity a and atmospheric CVD of AlN. High Quality AIN thin film was obtained at $700-900^{\circ}C$. The AIN film was characterized by RBS

  • PDF

Preferred orientation of TiN thin films produced by Ion Beam Assist Deposition

  • Won, J.Y.;Kim, J.H.;Kang, H.J.;Baeg, C.H.;Park, S.Y.;Hong, J.W.;Wey, M.Y.
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.S1
    • /
    • pp.154-159
    • /
    • 1997
  • The crystal structure properties of TiN thin films deposited on SKD61 steel and Si(100) substrates by Ion Beam Assisted Deposition have been studied to clarify the thin film growth mechanism by using XRD, RBS, SEM, and AFM. The preferred orientation of TiN thin films changes from (111) to (100) as increasing the assisted energy. This tendency is independent of the substrate structure. The TiN thin film grow with (100) direction having surface free energy minimum as the assisted energy increases.

  • PDF

Thin Film Passivation of Organic Light Emitting Diodes by Catalyzer Enhanced Chemical Vapor Deposition (CECVD) (촉매반응 화학기상증착법을 이용한 유기발광소자의 박막 봉지)

  • Kim, Han-Ki;Moon, J.M.;Bae, J.H.;Jeong, S.W.;Kim, M.S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.71-72
    • /
    • 2006
  • We report on plasma damage free chemical vapor deposition technique for the thin film passivation of organic light emitting diodes (OLEDs), organic thin film transistor (OTFT) and flexible displays using catalyzer enhanced chemical vapor deposition (CECVD). Specially designed CECVD system has a ladder-shaped tungsten catalyzer and movable electrostatic chuck for low temperature deposition process. The top emitting OLED with thin film $SiN_x$ passivation layer shows electrical and optical characteristics comparable to those of the OLED with glass encapsulation. This indicates that the CECVD technique is a promising candidate to grow high-quality thin film passivation layer on OLED, OTFT, and flexible displays.

  • PDF

Effect of Rapid Thermal Annealing on the Resistivity Changes of Reactively Sputtered Tungsten Nitride Thin Film (Sputtering법으로 제조된 Tungsten Nitride 박막의 저항변화에 미치는 급속 열처리 영향)

    • Korean Journal of Materials Research
    • /
    • v.10 no.1
    • /
    • pp.29-33
    • /
    • 2000
  • The amorphous tungsten nitrides, WNx, film could be fabricated by reactive sputtering process. The nitrogen concentration for the amorphization ranges from 10 at% to 40at%. The amorphous $W_{67}N_{33}$ film was crystallized into low resistivity $\alpha$-tungsten phase with equiaxed grains and excess nitrogen after the rapid thermal annealing for 1min at 1273K, which was similar to the resistivity of the sputtered pure tungsten film. The excess nitrogen was depleted from $\alpha$-tungsten crystals and then segregated at $\alpha$-tungsten/poly-Si interface. The segregated nitrogen has favored the formation of the homogeneous diffusion barrier layer comprised of silicon nitride, $Si_3N_4$, nano-crystals, which undertaken the inhibition of the high resistivity tungsten silicide reaction.

  • PDF

[ $NH_3$ ] Pulse Plasma Treatment for Atomic Layer Deposition of W-N Diffusion Barrier (암모니아 펄스 플라즈마를 이용한 원자층 증착된 질화텅스텐 확산방지막 특성)

  • Lee, Chang-Woo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.29-35
    • /
    • 2004
  • We have deposited the W-N diffusion barrier on Si substrate with $NH_3$ pulse plasma enhanced atomic layer deposition (PPALD) method by using $WF_6$ and $NH_3$ gases. The $WF_6$ gas reacts with Si that the surface corrosion occurs severely, but the $NH_3$ gas incorporated with pulse plasma and $WF_6$ gas are easily deposited W-N thin film without Si surface corrosion. Because the $NH_3$ with pulse plasma can be active species dissociated and chemisorbed on Si. Thus the Si surface are covered and saturated with nitrogen, which are able to deposit the W-N thin film. We also examine the deposition mechanism and the effect of $NH_3$ pulse plasma treatment.

  • PDF