• Title/Summary/Keyword: W-Mo-Ni-Fe

Search Result 28, Processing Time 0.024 seconds

Suppression of Interfacial Segregation and Control of Microstructure for Improvement of Mechanical Properties of W-Ni-Fe Heavy Alloy (계면편석 억제와 미세구조 조절에 의한 중합금의 기계적성질 향상)

  • 강석중
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 1993.11a
    • /
    • pp.3-3
    • /
    • 1993
  • In mechanical testing of W-Ni-Pe heavy alloys, the cracks nucleate at W/W interface and propagate through W/ Imatrix interface or through matrix phase together with the cleavage of W grains. The mechanical properties can therefore be improved by control of the interfacial strength and area. In this presentation, some experimental result and techniques on this subject will be reviewed and discussed. The hydrogen embrittlement caused by the hydrogen segregation at interfaces during sintering in an hydrogen atmosphere can be removed by an heat-treattnent in vacuum or in an inert atmosphere. The heat-treatment condition can be estimated by using a diffusion equation for a cylindrical shape. The mechanical properties, in particular the impact property, are degraded by the segregation of non-metallic impurities, such as Sand P. The degradation can be prevented by adding a fourth element, such as La or Ca, active with the non-metallic impurities. The cyclic heat-treatment at usual heat-treattnent tempemture causes the penetration of matrix between W/W grain boundaries and results in remarkable increase in impact energy. This is due to an increase in the area of ductile failure during the impact test. The instability of W/matrix interface casued by addition of Mo or Re can be controlled by using W powders of different size. The increase in the interfacial area in found to be related to the presence of non-equilibrium pure W gmins among W(Mo or Re) solid solution gmins.

  • PDF

A Geochemical Study on Trace Elements in the Granitic Rocks in relation to Mineralization in the Limestone Area of the Taebaegsan Basin (화강암류중 미량원소와 태백산분지내 석회암지역 광화작용과의 지구화학적 관계)

  • Lee, Jae Yeong
    • Economic and Environmental Geology
    • /
    • v.20 no.3
    • /
    • pp.179-196
    • /
    • 1987
  • Various skarn ore deposits of Pb-Zn, Fe-Cu, W-Mo and others are widely distributed in the study area which consists mainly of Cambro Ordovician calcareous rocks. The ore deposits are all in close association with specific types of granitic rocks of mid-late Cretaceous age according to the kinds of ores: Fe-Cu deposit with granodiorite-quartz monzodiorite, Pb-Zn deposit with granite-granodiorite, W-Mo deposit with granite, and Mn deposit with quartz porphyry. The granitic rock of Fe-Cu deposit has lower content in K and higher in Ca than those of Pb-Zn deposits. On the contrary, the granitic rock of W-Mo deposit has much higher content in K and lower in Ca in comparison to those of Pb-Zn deposits. However, the granitic rock of Mn deposit shows similar variation to those of Pb-Zn deposits. Lithophile trace elements of Sr and Rb tend to vary in close relation with major elements of K and Ca, respectively. In good contrast, chalcophile elements of Cu, Pb, Zn, Wand Mo are enriched in the granitic rocks of their ore deposits, and other trace elements of Ni and Co show a trend to vary in relation with Mg, Fe and Cu, which have the same replacement index (0.14) as Ni and Co. Average K/Rb and Ca/Sr ratios of the granitic rocks range nearly within 300~150 and 150~40, respectively, and the distribution pattern of the ratios is different according to the kind of ore deposits: Fe-Cu deposit is plotted toward K-Rb poor region whereas Pb-Zn and W-Mo deposits toward K-Rb rich region. In contrast, Fe-Cu and Fe deposits are plotted toward Ca-Sr rich region whereas Pb-Zn deposit toward Ca-Sr poor region. The variation trend of chemical elements of the mid-late Cretaceous granitic rocks in the study area is similar to that of the Cretaceous granitic rocks in the Gyeongsang Basin. Therefore, this geochemical result may be applicable to determining what kinds of ore deposits a Cretaceous granitic rock is favourable for, and whether it is productive or non-productive for systematic geochemical exploration works.

  • PDF

Corrosion Behavior and Effect of Alloying Elements of Fe-base and Ni-base Superalloys on Hot Molten Salt (고온 용융염에서 Fe기 및 Ni기 초합금의 부식거동 및 합금원소의 영향)

  • Jo, Su-Haeng;Jang, Jun-Seon;Jeong, Myeong-Su;O, Seung-Cheol;Sin, Yeong-Jun
    • Korean Journal of Materials Research
    • /
    • v.9 no.10
    • /
    • pp.985-991
    • /
    • 1999
  • Corrosion behaviors of Incoloy 800H, KSA(Kaeri Superalloy)-6, Inconel 600 and Hastelloy C-276 in molten salts were investigated in the temperature range of 650 ~ $850^{\circ}C$. Due to $\textrm{Li}_{2}\textrm{O}$-induced basic fluxing mechanism, the corrosion rates of the alloys in mixed molten salt of LiC1-$\textrm{Li}_{2}\textrm{O}$ were significantly higher than those in molten salt of LiCl. In the mixed molten salt, Fe-base alloys showed higher corrosion resistance than the Ni-base alloys. and Hastelloy C-276 with high Mo and W contents exhibited the highest corrosion rate among the examined alloys. The single layer of $\textrm{LiCrO}_{2}$ was formed in molten salt of LiCl and two phase structure of a scale consisted of oxides and Ni was formed in the mixed molten salt.

  • PDF

Annealing Effect on the Mechanical Properties of Hot-Rolled Fe55Co17.5Ni10Cr12.5Mo5 High-Entropy Alloy (열간압연 된 Fe55Co17.5Ni10Cr12.5Mo5 고엔트로피합금의 소둔 조건에 따른 기계적 특성 변화)

  • Park, H.D.;Bae, D.H.;Won, J.W.;Moon, J.;Kim, H.S.;Seol, J.B.;Sung, H.;Bae, J.W.;Kim, J.G.
    • Transactions of Materials Processing
    • /
    • v.31 no.5
    • /
    • pp.273-280
    • /
    • 2022
  • Although the mechanical properties of high-entropy alloys depend on the annealing conditions, limited works were established to investigate the annealing effect on the mechanical properties of Mo-added high-entropy alloys. Therefore, in the present work, the annealing effects on the microstructural evolution and mechanical properties of Mo-added high-entropy alloy were investigated. As a result, incomplete recrystallization from the limited annealing time not only suppresses deformation-induced phase transformation during cryogenic tensile test but also induces a deformation instability that results into the ductility reduction compare with the fully recrystallized sample. This result represents adjustment of annealing time is useful to control both transformation-induce plasticity and deformation instability of high-entropy alloys, and this can be applied to control the mechanical properties of metallic alloys by combining pre-straining and subsequent annealing.

Thermal Properties and Microstructural Changes of Fe-Co System Valve Seat Alloy by High Densification Process (고밀도화 공정에 의한 Fe-Co 계 밸브시트 합금의 조직변화와 열적 특성)

  • Ahn, In-Shup;Park, Dong-Kyu;Ahn, Kwang-Bok;Shin, Seoung-Mok
    • Journal of Powder Materials
    • /
    • v.26 no.2
    • /
    • pp.112-118
    • /
    • 2019
  • Infiltration is a popular technique used to produce valve seat rings and guides to create dense parts. In order to develop valve seat material with a good thermal conductivity and thermal expansion coefficient, Cu-infiltrated properties of sintered Fe-Co-M(M=Mo,Cr) alloy systems are studied. It is shown that the copper network that forms inside the steel alloy skeleton during infiltration enhances the thermal conductivity and thermal expansion coefficient of the steel alloy composite. The hard phase of the CoMoCr and the network precipitated FeCrC phase are distributed homogeneously as the infiltrated Cu phase increases. The increase in hardness of the alloy composite due to the increase of the Co, Ni, Cr, and Cu contents in Fe matrix by the infiltrated Cu amount increases. Using infiltration, the thermal conductivity and thermal expansion coefficient were increased to 29.5 W/mK and $15.9um/m^{\circ}C$, respectively, for tempered alloy composite.

Crack driving force prediction based on finite element analysis using standard models

  • Brnic, Josip;Vukelic, Goran;Turkalj, Goran
    • Structural Engineering and Mechanics
    • /
    • v.44 no.5
    • /
    • pp.601-609
    • /
    • 2012
  • Effect of different crack sizes on fracture criterion of some engineering materials was investigated in this work. Using finite element (FE) method coupled with a newly developed algorithm, J-integral values for different crack sizes were obtained for single-edge notched bend (SENB) and compact type (CT) specimen. Specimens with initial a/W ratio from 0.25 to 0.75 varying in crack size in steps of 0.125 were investigated. Several different materials, like 20MnMoNi55, 42CrMo4 and 50CrMo4, usually used in engineering structure, were investigated. For one of mentioned materials, numerical results were compared with experimental and their compatibility is visible.

Preparation and Characteristics of Liquid Silicone Rubber Using Polyorganosiloxane Modified with Dimethylacrylamide (디메틸아크릴아마이드 변성 폴리오가노실록산을 이용한 액상 실리콘 고무의 제조와 그 특성)

  • 강두환;이병철
    • Polymer(Korea)
    • /
    • v.28 no.2
    • /
    • pp.143-148
    • /
    • 2004
  • ${\alpha}$,$\omega$-Hydrogen polyorganosiloxane(HPMDMS) prepolymer was prepared from equilibrium polymerization ofoctamethylcyclotetrasiloxane, 1,3,5-trimethylcyclotrisiloxane, 1,3,5,7-tetravinyl-1,3,5,7-tetramethyl-cyclotetrasiloxane, and 1,1,3,3-tetramethyl disiloxane as an end-blocker in the presence of tetramethylammonium siloxanolate as a catalyst. Polyorganosiloxane modified with dimethylacrylamide(APMDMS) was prepared by hydrosilylation of HPMDMS with dimethylacrylamide in the presence of Pt catalyst, and followed by coordination of metal oxide (APMDMS-MO), such as NiO and FeO, to the amide moieties of the resulting polymer. The chemical structures of HPMDMS and APMDMS were confirmed by FT-IR and $^1$H-NMR analysis. Liquid silicone rubber containing metal oxide composite (LSRMO) was prepared by compounding APMDMS-MO, ${\alpha}$,$\omega$-vinylpolydimethylsiloxane, and a catalyst in a high speed dissolver. The thermal conductivity of LSRMO composite was determined to be 0.29 W/mK, and the volume resistivity exhibited a lower value than that of LSR composite. The mechanical and thermal properties of LSRMO and LSR composite were measured by UTM and TGA.

Decomposition of Toluene over Transition Metal Oxide Catalysts (전이금속 산화물 촉매를 이용한 톨루엔 분해)

  • Cheon, Tae-Jin;Choi, Sung-Woo;Lee, Chang-Seop
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.6
    • /
    • pp.651-656
    • /
    • 2005
  • Toluene, which is emitted from textile process, is considered as an important hazardous air pollutant. In this study, the catalytic activity of transition metal oxides(Cu, Mn, V, Cr, Co, Ni, Ce, Sn, Fe, Sr, Cs, Mo, La, W, Zn)/${\gamma}-Al_2O_3$ catalysts was investigated to carry out the complete oxidation of toluene. The metal catalysts were characterized by XRD-ray diffraction), FE-SEM(Field Emission Scanning Electron Micrograph), BET(Brunauer Emmett Teller) method and TPR(Temperature Programmed Reduction). Among the catalysts, Cu/${\gamma}-Al_2O_3$ was highly promising catalyst for the oxidation of toluene. From the BET results, it seems that the catalytic activity is not correlated to the specific surface area. XRD results indicated that most of catalysts exist as amorphous phase. From the FE-SEM results, it was observed that copper on ${\gamma}-Al_2O_3$ surface was well dispersed among catalysts. The catalytic activity for the toluene oxidation could be explained with that metal oxide catalyst was dispersed well over supports and was attributed to reduction activity in surface of catalysts.

Effects of Alloying Elements on Corrosion Resistance of Low Alloyed Steels in a Seawater Ballast Tank Environment (Seawater ballast tank 환경에서 저합금강의 내식성에 미치는 합금원소의 영향)

  • Kim, Dong Woo;Kim, Heesan
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.6
    • /
    • pp.523-532
    • /
    • 2010
  • Co-application of organic coating and cathodic protection has not provided enough durability to low-alloyed steels inseawater ballast tank (SBT) environments. An attempt has made to study the effect of alloy elements (Al, Cr, Cu, Mo, Ni, Si, W) on general and localized corrosion resistance of steels as basic research to develop new low-allowed steels resistive to corrosion in SBT environments. For this study, we measured the corrosion rate by the weigh loss method after periodic immersion in synthetic seawater at $60^{\circ}C$, evaluated the localized corrosion resistance by an immersion test in concentrated chloride solution with the critical pH depending on the alloy element (Fe, Cr, Al, Ni), determined the permeability of chloride ion across the rust layer by measuring the membrane potential, and finally, we analyzed the rust layer by EPMA mapping and compared the result with the E-pH diagram calculated in the study. The immersion test of up to 55 days in the synthetic seawater showed that chromium, aluminium, and nickel are beneficial but the other elements are detrimental to corrosion resistance. Among the beneficial elements, chromium and aluminium effectively decreased the corrosion rate of the steels during the initial immersion, while nickel effectively decreased the corrosion rate in a longer than 30-day immersion. The low corrosion rate of Cr- or Al-alloyed steel in the initial period was due to the formation of $Cr_2FeO_4$ or $Al_2FeO_4$, respectively -the predicted oxide in the E-pH diagram- which is known as a more protective oxide than $Fe_3O_4$. The increased corrosion rate of Cr-alloyed steels with alonger than 30-day exposure was due to low localized corrosion resistance, which is explained bythe effect of the alloying element on a critical pH. In the meantime, the low corrosion rate of Ni-alloyed steel with a longer than 30-day exposure wasdue to an Ni enriched layer containing $Fe_2NiO_4$, the predicted oxide in the E-pH diagram. Finally, the measurement of the membrane potential depending on the alloying element showed that a lower permeability of chloride ion does not always result in higher corrosion resistance in seawater.

Sedimentary type Non-Metallic Mineral Potential Analysis using GIS and Weight of Evidence Model in the Gangreung Area (지리정보시스템(GIS) 및 Weight of Evidence 기법을 이용한 강릉지역의 퇴적기원의 비금속 광상부존가능성 분석)

  • Lee Sa-Ro;Oh Hyun-Joo;Min Kyung-Duck
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.129-150
    • /
    • 2006
  • Mineral potential mapping is an important procedure in mineral resource assessment. The purpose of this study is to analyze mineral potential using weight of evidence model and a Geographic Information System (GIS) environment to identify areas that have not been subjected to the same degree of exploration. For this, a variety of spatial geological data were compiled, evaluated and integrated to produce a map of potential mineral in the Gangreung area, Korea. for this, a spatial database considering mineral deposit, topographic, geologic, geophysical and geochemical data was constructed for the study area using a GIS. The used mineral deposits were non-metallic(Kaolin, Porcelainstone, Silicastone, Mica, Nephrite, Limestone and Pyrophyllite) deposits of sedimentary type. The factors relating to mineral deposits were the geological data such as lithology and fault structure, geochemical data, including the abundance of Al, As, Ba, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, Pb, Si, Sr, V, Zn, $Cl^-,\;F^-,\;{PO_4}^{3-},\;{NO_2}^-,\;{NO_3}^-,\;SO_{42-}$, Eh, PH and conductivity and geophysical data, including the Bouguer and magnetic anomalies. These factors were used with weight of evidence model to analyze mineral potential. Probability models using the weight of evidence were applied to extract the relationship between mineral deposits and related factors, and the ratio were calculated. Then the potential indices were calculated by summation of the likelihood ratio and mineral potential maps were constructed from Geographic Information System (GIS). The mineral potential maps were then verified by comparison with the known mineral deposit areas. The result showed the 85.66% in prediction accuracy.

  • PDF