• Title/Summary/Keyword: W/G Transition loss

Search Result 14, Processing Time 0.033 seconds

HPA MMIC to W/G Antenna Transition Loss Analysis and Development Results of W-band Transmitter Module

  • Kim, Wansik;Jung, Juyong;Lee, Juyoung;Kim, Jongpil
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.236-241
    • /
    • 2019
  • This paper will read about a multichannel frequency-modulated continuous wave (FMCW) radar sensor with switching transmit (TX) antennas is developed at W-band. To achieve a high angular resolution, a uniform linear array consisting of 5 switching-TX and 12 receive (RX) antennas is employed with the digital beamforming technique. The overall radar front-end module comprises a W-band transceiver and TX/RX antennas. A multichannel transceiver module consists of 5 up-conversion and 12 down-conversion channels, where one of the TX channels is sequentially switched ON. For developing transmitter, we developed an HPA (high power amplified) MMIC chip for W-band radar system and fabricated a transmitter module using this chip. In order to develop the W-band transmitter, we analyzed the important antenna transition structure from HPA MMIC line to W/G (Waveguide)antenna via M/S(microstrip) and fabricated it with 5 transmission channels. As a result, the output power of the transmitter was within 1 dB of the error range after analysis and measurement under normal temperature and environmental conditions.

ZVT single phase power factor correction circuit with low conduction loss and low cost (저도통 손실, 저가의 ZVT 단상 역률 보상 회로)

  • Baek, J.W.;Cho, J.G.;Kim, W.H.;Rim, G.H.;Song, D.I.;Kwon, S.G.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.255-258
    • /
    • 1996
  • A new low conduction loss, low cost zero-voltage-transition power factor correction circuit(PFC) is presented. Conventional PFC which consists of a bridge diode and a boost converter(one switch) always has three semiconductor conduction drops. Two switch type PFCs reduces conduction loss by reducing one conduction drop but the cost is increased because of increased number of active switches. The proposed PFC reduces conduction loss with one switch, which allows low cost. Conduction loss improvement is a little bit less than that of two switch type, but very close up. Operation and features are comparatively illustrated and verified by simulation and experimental results of 1 kW laboratory prototype.

  • PDF

Analysis and Development Results of W-band Transceiver Module using Open MMIC Chips (국내개발 MMIC칩을 적용한 W-Band 송수신모듈의 분석 및 제작 결과)

  • Kim, Wansik;Jung, Jooyong;Kim, Jongpil
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.6
    • /
    • pp.163-168
    • /
    • 2018
  • We developed W-band transceiver module using open MMIC chip such as receiver single chip and transmitting power amplifier. In order to calculate the noise figure and output power value, we analyzed the W-band transition loss from the antenna to MMIC connection and constructed the 12 channel receiver and the 5 channel transmitter. And compared with the results of the measurement. As a result, the output power of the transmitter was similar to the analytical results and the measured results at room temperature and environmental conditions. The noise figure of the receiver was also similar, but some channels showed error of about 3 dB due to manufacturing error.

Domestic Development and Module Manufacturing Results of W-band PA and LNA MMIC Chip (W-대역 전력증폭 및 저잡음증폭 MMIC의 국내개발 및 모듈 제작 결과)

  • Kim, Wansik;Lee, Juyoung;Kim, Younggon;Yu, Kyungdeok;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.29-34
    • /
    • 2021
  • For the purpose of Application to the small radar sensor, the MMIC Chips, which are the core component of the W-band, was designed in Korea according to the characteristics of the transceiver and manufactured by 60nm GaN and 0.1㎛ GaAs pHEMT process. The output power of PA is 28 dBm at center frequency of W-band and Noise figure is 6.7 dB of switch and LNA MMIC. Output power and Noise figure of MMIC chips developed in domestic was applied to the transmitter and receiver module through W-band waveguide low loss transition structure design and impedance matching to verify the performance after the fabrication are 26.1~27.7 dBm and 7.85~10.57 dB including thermal testing, and which are close to the analysis result. As a result, these are judged that the PA and Switch and LNA MMICs can be applied to the small radar sensor.

Zero Voltage Transition Full Bridge Boost Converter for Single Stage Power Factor Correction (Single Stage 역률보상을 위한 ZVT 풀 브릿지 부스트 컨버터)

  • Song, D.I.;Kwon, S.K.;Cho, J.G.;Back, J,W.;Kim, W.H.;Kim, J.S.;Rim, G.H.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.351-354
    • /
    • 1996
  • A zero-voltage-transition(ZVT) full bridge (FB) boost converter for single stage power factor correction (PFC) in distributed power system is proposed. A simple auxiliary circuit provides zero-voltage-switching(ZVS) condition to all semiconductor devices without imposing additional voltage and current stresses and loss of PWM capability. The proposed boost converter provides both input power factor correction and direct conversion from $110{\sim}220VAC$ line to 300VDC bus with single power stage. Operational principle, analysis of the proposed converter are described and verified by computer simulation and experimental results from a 1.5 kW, 80 kHz laboratory prototype.

  • PDF

Development and Manufacture of W-band MMIC Chip and manufacture of Transceiver (W-대역 MMIC 칩 국내 개발 및 송수신기 제작)

  • Kim, Wansik;Jung, Jooyong;Kim, Younggon;Kim, Jongpil;Seo, Mihui;Kim, Sosu
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.19 no.6
    • /
    • pp.175-181
    • /
    • 2019
  • For the purpose of Application to the small radar sensor, the MMIC Chip, which is the core component of the W-band, was designed in Korea according to the characteristics of the transceiver and manufactured by 0.1㎛ GaAs pHEMT process, and compared with the MMIC chip purchased overseas. The noise figure of low noise amplifier, insertion loss of the switch and image rejection performance of the down-converted mixer MMIC chip showed better characteristics than those of commercial chips. The MMIC chip developed in domestic was applied to the transmitter and receiver through W-band waveguide low loss transition structure design and impedance matching to verify the performance after the fabrication is 9.17 dB, which is close to the analysis result. As a result, it is judged that the transceiver can be applied to the small radar sensor better than the MMIC chip purchased overseas.

Improved ZVT AC/DC PFC Boost Converter (개선된 ZVT AC/DC PFC Boost 컨버터)

  • Ryu, Jong-Gyu;Kim, Yong;Bae, Jin-Yong;Gye, Sang-Bum;Kwon, Soon-Do
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.172-175
    • /
    • 2005
  • Recently international regulations governing the amount of harmonic currents(e.g IEC 61000-3-2) became mandatory and active Power factor correction (PFC) pre-regulator circuit became inevitable for the AC/DC converters. Among these topologies, the boost topology represents an optimum solution for a PFC pre-regulation in a high power application. This paper propose improved ZVT(Zero Voltage Transition) AC/DC PFC Boost using the average current control employing a soft-switching technique of the auxiliary switch with a minimum number of components. The conventional ZVT PFC Boost Converter has a disadvantage that the auxiliary switch turns off hard, which influences the overall efficiency and the EMI problem. In this paper, an improved ZVT PFC Boost converter using active snubber is proposed to minimize the switching loss of the auxiliary. The prototype of 100kHz, 640W system was implemented to show the improved performance.

  • PDF

The Effects of Molecular Weight Distribution on the Rheological Behavior of PVA/DMSO Solution Systems (PVA/DMSO 용액계의 유변학적 특성에 미치는 PVA의 분자량분포의 영향)

  • Lee, Eun-Jeoung;Kim, Byoung-Chul
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.532-537
    • /
    • 2007
  • The rheological properties of the solutions of atactic poly(vinyl alcohol)(PVA) in dimethyl sulfoxide (DMSO) were investigated in terms of molecular weight distribution (MWD) of the polymer. The dynamic viscosity (${\eta}#$) and loss modulus (G") for the PVA/DMSO solutions with broader MWD were lower than those with narrower MWD at the similar $M_w$. It could be explained by the fact that the free volume for the solution with broader MWD at the similar $M_w$ was increased. The storage modulus(G#) of 14 wt% PVA/DMSO solutions with broader MWD was higher than that with narrower MWD at a lower frequency than 1.3 rad/sec, but lower than that with narrower MWD at a higher frequency (>1.3 rad/sec). The slopes of modified Cole-Cole plots of the 14 wt% solutions showed that as the MWD was broadened, the phase transition with frequency was more noticeable.

Non-Dissipative Snubber for High Switching Frequency and High Power Density Step-Down Converters (고속 스위칭 및 고 전력밀도 강압형 컨버터를 위한 무손실 스너버)

  • Shin, Jung-Min;Park, Chul-Wan;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.345-352
    • /
    • 2017
  • In this paper, a non-dissipative snubber for reducing the switching losses in the step down converter is proposed. The conventional step down converter, e.g., buck converter, suffers from serious switching losses and consequentially heat generation because of its hard switching. Thus, it is unsuitable for high switching frequency operation. Reduction of the reactive components' size, such as an output inductor and capacitor, is difficult. The proposed snubber can slow down the increasing current slopes and switch voltage at turn-on and turn-off transients, thereby significantly reducing the switching loses. Additionally, the slowly increasing current during switch turn-on transition, can effectively solve the output rectifier diode reverse recovery problem. Therefore, the proposed non-dissipative snubber not only leads to the efficiency of converter operation at high switching frequency but also reduces the reactive components size in proportion to the switching frequency. To confirm the validity of the proposed circuit, theoretical analysis and experimental results from a 150 W, 1 MHz prototype are presented.

ACTIVE FAULT-TOLERANT CONTROL OF INDUCTION MOTOR DRIVES IN EV AND HEV AGAINST SENSOR FAILURES USING A FUZZY DECISION SYSTEM

  • Benbouzid, M.E.H.;Diallo, D.;Zeraoulia, M.;Zidani, F.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.729-739
    • /
    • 2006
  • This paper describes an active fault-tolerant control system for an induction motor drive that propels an Electrical Vehicle(EV) or a Hybrid one(HEV). The proposed system adaptively reorganizes itself in the event of sensor loss or sensor recovery to sustain the best control performance given the complement of remaining sensors. Moreover, the developed system takes into account the controller transition smoothness in terms of speed and torque transients. In this paper which is the sequel of (Diallo et al., 2004), we propose to introduce more advanced and intelligent control techniques to improve the global performance of the fault-tolerant drive for automotive applications(e.g. EVs or HEVs). In fact, two control techniques are chosen to illustrate the consistency of the proposed approach: sliding mode for encoder-based control; and fuzzy logics for sensorless control. Moreover, the system control reorganization is now managed by a fuzzy decision system to improve the transitions smoothness. Simulations tests, in terms of speed and torque responses, have been carried out on a 4-kW induction motor drive to evaluate the consistency and the performance of the proposed fault-tolerant control approach.