The Effects of Molecular Weight Distribution on the Rheological Behavior of PVA/DMSO Solution Systems

PVA/DMSO 용액계의 유변학적 특성에 미치는 PVA의 분자량분포의 영향

  • Lee, Eun-Jeoung (Department of Molecular System Engineering/Fiber & Polymer Engineering, Hanyang University) ;
  • Kim, Byoung-Chul (Department of Molecular System Engineering/Fiber & Polymer Engineering, Hanyang University)
  • 이은정 (한양대학교 응용화공생명공학부 분자시스템공학과) ;
  • 김병철 (한양대학교 응용화공생명공학부 분자시스템공학과)
  • Published : 2007.11.30

Abstract

The rheological properties of the solutions of atactic poly(vinyl alcohol)(PVA) in dimethyl sulfoxide (DMSO) were investigated in terms of molecular weight distribution (MWD) of the polymer. The dynamic viscosity (${\eta}#$) and loss modulus (G") for the PVA/DMSO solutions with broader MWD were lower than those with narrower MWD at the similar $M_w$. It could be explained by the fact that the free volume for the solution with broader MWD at the similar $M_w$ was increased. The storage modulus(G#) of 14 wt% PVA/DMSO solutions with broader MWD was higher than that with narrower MWD at a lower frequency than 1.3 rad/sec, but lower than that with narrower MWD at a higher frequency (>1.3 rad/sec). The slopes of modified Cole-Cole plots of the 14 wt% solutions showed that as the MWD was broadened, the phase transition with frequency was more noticeable.

본 연구에서는 poly(vinyl alcohol)(PVA)를 dimethyl sulfoxide(DMSO)에 녹여 이 용액의 유변학적 특성에 미치는 PVA의 분자량분포의 영향에 관하여 고찰하였다. 동일 평균분자량인 경우에도 수지 혼합(resin blending)에 의해 분자량분포가 넓어지면 점도와 손실탄성률이 더 낮아짐을 알 수 있었다. 이것은 동일 평균 분자량의 경우 분자량분포가 넓은 PVA/DMSO 용액계의 자유체적이 증가되기 때문이라고 생각된다. 분자량 분포가 저장탄성률에 미치는 영향은, 14 wt%용액의 경우에는, 1.3 rad/sec보다 낮은 진동수 영역에서는 동일 평균분자량의 경우 분자량분포가 넓은 PVA/DMSO 용액계가 탄성이 더 크고, 1.3 rad/sec보다 높은 진동수 영역에서는 분자량분포가 좁은 PVA/DMSO 용액계가 탄성이 더 크게 측정되었다. 14 wt% 용액의 경우에 Modified Cole-Cole plot에서의 기울기는 분자량분포가 넓어지면 진동수에 따른 상전이 현상이 더 뚜렷해졌다.

Keywords

References

  1. I. Sakurada, Polyvinyl Alcohol Fibers, M. Lewin, Editor, Marcel Dekker, New York, pp. 3 (1985)
  2. K. Toyoshima, Polyvinyl Alcohol, C. A. Finch, Editor, John Wiley and Sons, New York, pp. 208 (1973)
  3. S. Matsuzawa, K. Yamaura, R. Maeda, and K. Ogasawara, Makromol. Chem., 180, 229 (1979)
  4. W. S. Ha and W. S. Lyoo, U. S. Pat. 6,124,033 (2000)
  5. W. S. Ha and W. S. Lyoo, KR Pat. 1996-0011601 (1996)
  6. M. Masuda, Polyvinyl Alcohol-Developments, C. A. Finch, Editor, John Wiley and Sons, N.Y., pp. 404-431 (1991)
  7. A. Luzar and D. Chandler, J. Chem. Phys., 98, 8160 (1993)
  8. S. H. Hyon, W. I. Cha, and Y. Ikada, Polym. Bull., 22, 119 (1989)
  9. M. Watase and K. Nishinari, Polym. J., 21, 567 (1989)
  10. K. Yamaura, M. Itoh, T. Tanigami, and S. Matsuzawa, J. Appl. Polym. Sci., 37, 2709 (1989)
  11. H. Fujiwara, M. Shibayama, J. H. Chen, and S. Nomura, J. Appl. Polym. Sci., 37, 1403 (1989)
  12. C. Seoul and S. Mah, Polymer, 38, 5551 (1997)
  13. J. E. Guillet, R. L. Combs, D. F. Slonaker, D. A. Weems, and H. W. Coover, J. Appl. Polym. Sci., 9, 757 (1965)
  14. K. C. Ramey and N. D. Field, Polym. Lett., 3, 63 (1965) https://doi.org/10.1002/pol.1965.110031116
  15. K. C. Ramey and N. D. Field, Polym. Lett., 3, 69 (1965) https://doi.org/10.1002/pol.1965.110031116
  16. F. A. Bovey and L. W. Jelinski, Chain structure and conformation of macromolecules, Academic Press, New York, pp. 61 (1982)
  17. S. Middleman, J. Appl. Polym. Sci., Vol. II, 417 (1967)
  18. S. Middleman, The flow of high polymers, Interscience, New York, pp. 154 (1968)
  19. J. W. C. Adamse, H. Janeschitz-Kriegl, J. L. Denotter, and J. L. S. Wales, J. Polym. Sci. A-2, 6, 871 (1968)
  20. R. L. Combs, D. F. Slonaker, and H. W. Coover, J. Appl. Polym. Sci., 13, 519 (1969)
  21. C. D. Han, T. C. Yu, and K. U. Kim, J. Appl. Polym. Sci., 15, 1149 (1971)
  22. J. E. Guillet, R. L. Combs, D. F. Slonaker, D. A. Weems, and H. W. Coover, J. Appl. Polym. Sci., 9, 767 (1965)
  23. J. D. Ferry, M. L. Williams, and D. M. Stern, J. Chem. Phys., 58, 987 (1954)
  24. W. S. Lyoo, B. C. Kim, and W. S. Ha, Polym. J., 30, 424 (1998)
  25. H. Aoki, J. L. White, and J. F. Fellers, J. Appl. Polym. Sci., 23, 2293 (1979)
  26. R. M. Ottenbrite, L. R. Utracki, and S. Inoue, Current Topics in Polymer Science, Hanser Publishers, Munich, Vol II, pp. 181-196 (1987)
  27. R. M. Ottenbrite, L. R. Utracki, and S. Inoue, Current Topics in Polymer Science, Hanser Publishers, Munich, Vol II, pp. 149-165 (1987)
  28. C. D. Han and M. S. Jhon, J. Appl. Polym. Sci., 32, 3809 (1986)
  29. C. D. Han, J. Kim, and J. K. Kim, Macromolecules, 22, 383 (1989) https://doi.org/10.1021/ma00192a076
  30. C. D. Han and J. K. Kim, Polymer, 34, 2533 (1993)
  31. K. F. Wissburn and A. C. Griffin, J. Polym. Sci: Polym. Phys. Ed, 20,1835 (1982)