• Title/Summary/Keyword: Vulnerability Analysis Index

Search Result 134, Processing Time 0.023 seconds

Return Period Estimation of Droughts Using Drought Variables from Standardized Precipitation Index (표준강수지수 시계열의 가뭄특성치를 이용한 가뭄 재현기간 산정)

  • Kwak, Jae Won;Lee, Sung Dae;Kim, Yon Soo;Kim, Hung Soo
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.8
    • /
    • pp.795-805
    • /
    • 2013
  • Drought is one of the severe natural disasters and it can profoundly affect our society and ecosystem. Also, it is a very important variable for water resources planning and management. Therefore, the drought is analyzed in this study to understand the drought distribution and trend. The Standard Precipitation Index (SPI) is estimated using precipitation data obtained from 55 rain gauge stations in South Korea and the SPI based drought variables such as drought duration and drought severity were defined. Drought occurrence and joint probabilistic analysis for SPI based drought variables were performed with run theory and copula functions. And then the return period and spatial distribution of droughts on the South Korea was estimated. As the results, we have shown that Gongju and Chungju in Chungcheong-do and Wonju, Inje, Jeongseon, Taebeak in Gangwon-do have vulnerability to droughts.

Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea (표준강수증발산지수를 활용한 미래 가뭄특성의 시계열 변화전망)

  • Nam, Won-Ho;Hayes, Michael J.;Wilhite, Donald A.;Svoboda, Mark D.
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.1
    • /
    • pp.37-45
    • /
    • 2015
  • Recent droughts in South Korea have had large economic and environmental impacts across the country. Changes in rainfall and hydrologic patterns due to climate change can potentially increase the occurrence of extreme droughts and affect the future availability of water resources. Therefore, it is necessary to evaluate drought vulnerability for water resources planning and management, and identify the appropriate mitigation actions to conduct a drought risk analysis in the context of climate change. The objective of this study is changes in the temporal trends of drought characteristics in South Korea to examine drought impacts under climate change. First, the changes of drought occurrence were analyzed by applying the Standardized Precipitation Evapotranspiration Index (SPEI) for meteorological data on 54 meteorological stations, and were analyzed for the past 30 years (1981-2010), and Representative Concentration Pathways (RCP) climate change scenarios (2011-2100). Second, the changes on the temporal trends of drought characteristics were performed using run theory, which was used to compare drought duration, severity, and magnitude to allow for quantitative evaluations under past and future climate conditions. These results show the high influence of climate change on drought phenomenon, and will contribute to water resources management and drought countermeasures to climate change.

Spatial Relations of the Urban Expansion Intensity and Flooded Buildings (도시확장강도와 건물침수의 공간적 관계성)

  • Kang, Sang Jun;Kwon, Tae Jung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.4
    • /
    • pp.759-764
    • /
    • 2017
  • The paper is intended to explore the spatial relations between flooded buildings and urban expansion phenomena by employing urban expansion intensity index and hotspot analysis methods for the case of Gangneung. Two major results are as followed; first, flooding susceptible areas are found in the regions where the highly intense development occurs within a short period of time, so called pseudo-urbanization. Second, less flooded buildings exist in old towns where it is believed that there is the lack of urban infrastructure services. This study indicates the possibility that the highly intense development and pseudo-urbanization with a relatively short time period relate to flooded building events. In addition, the possibility leads to another issue that new developments might be increasing the flooding vulnerability worse than before, particularly, to the adjacent old towns. For the better understanding, it is desirable to have further related case studies in the near future.

SPECTRAL ANALYSIS OF WATER-STRESSED FOREST CANOPY USING EO-l HYPERION DATA

  • Kook Min-Jung;Shin Jung-Il;Lee Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.7-10
    • /
    • 2005
  • Plant water deficiency during drought season causes physiological stress and can be a critical indicator of forest fire vulnerability. In this study, we attempt to analyze the spectral characteristics of water stressed vegetation by using the laboratory measurement on leaf samples and the canopy reflectance spectra extracted from satellite hyperspectral image data. Leaf-level reflectance spectra were measured by varying moisture content using a portable spectro-radiometer. Canopy reflectance spectra of sample forest stands of two primary species (pine and oak) located in central part of the Korean peninsula were extracted from EO-l Hyperion imaging spectrometer data obtained during the drought season in 2001 and the normal precipitation year in 2002. The preliminary analysis on the reflectance spectra shows that the spectral characteristics of leaf samples are not compatible with the ones obtained from canopy level. Although moisture content of vegetation can be influential to the radiant flux reflected from leaf-level, it may not be very straightforward to obtain the spectral characteristics that are directly related to the level of canopy moisture content. Canopy spectra form forest stands can be varied by structural variables (such as LAt, percent coverage, and biomass) other than canopy moisture content.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Flooding Risk under Climate Change of Fast Growing Cities in Vietnam (베트남 급성장 도시지역의 기후변화 홍수재해 위험성 분석)

  • Kim, So Yoon;Lee, Byoung Jae;Lee, Jongso
    • Journal of Korean Society of Disaster and Security
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2020
  • Vietnamese cities have a high risk of flooding under climate change due to their geographical characteristics. In this situation, the urban area is expanding with rapid growth of urban population. However, the risk of flooding is increasing due to the increase in impermeable areas and insufficient infrastructure. This study analyzed the urban expansion trend at the national level in Vietnam for the past 10 years (2007-2017) by using the Urban Expansion Intensity Index. Also, this study selected Hue City as a region with a large impact of climate change and a rapid expansion and found the possibility of flooding in the urban expansion area. The result showed that cities have been expanded around major cities in the Red River Delta, Mekong Delta, and coastal areas. In the case of Hue City, the area with fast expansion rate has a higher expected flood area. It implies that the risk of flood disasters may increase if the urabn expansion is carried out without disaster prevention measures. It is expected that Korean urban disaster prevention policies such as urban climate change disaster vulnerability analysis system will be helpful in establishing urban plans considering climate change in the fast growing regions such as Vietnam.

Emergy Cost-Benefit Evaluation of the Down Stream of Nakdong River Using Environmental-Ecological Concept (환경 생태학적 개념을 이용한 낙동강 하류의 에머지 비용-편익 평가)

  • Jung, Hwa-Sook;Lee, Seog-Mo;Son, Hyeng-Sik;Son, Hee-Jong
    • Journal of Environmental Science International
    • /
    • v.22 no.4
    • /
    • pp.507-514
    • /
    • 2013
  • The Nakdong River being used as drinking water sources for the Busan metropolitan city has the vulnerability of water management due to the fact that industrial areas are located in the upper Nakdong River. This study used emergy analysis method to evaluate ecological-economics of water treatment systems of D water treatment plant (WTP) where located in the downstream of the Nakdong River. The emergy methodology is a system evaluation tool that uses energy as the common currency to compare different resources on a common basis. Emergy yield ratio (EYR) and emergy sustainability index (EmSI) of D WTP were 1.16 and 0.18, respectively. It means not resources and sustainable system but consumer goods and not sustainable system. Ratio of emergy benefit to the purchaser (EBP) shows 2.7 times higher than economic costs. To change the weak water source and situations we need to diversity water intake.

Effects of Clime Change on Spatio-Temporal Behavior of Drought Using SAD Analysis (SAD 해석을 이용한 기후변화가 가뭄의 시공간적 거동에 미치는 영향분석)

  • Choi, Chi-Hyun;Choi, Dae-Gyu;Kim, Eung-Seock;Kim, Sang-Dan
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.6
    • /
    • pp.89-97
    • /
    • 2010
  • In this study, the impact of climate change on the spatio-temporal behavior of extreme drought events is investigated by comparing drought severity-area-duration curves under present and future climate conditions. In our climate-change impact experiments, the future climate is based on two GCMs(CGCM3.1-T63 and CSIRO-MK3.0). As a result, in the case of CGCM3.1-T63 future drought events are similar to the present, but in the case of CSIRO-MK3.0 future drought risk is likely to increase. Such results indicate that a climate change vulnerability assessment for present water resources supply system is urgent.

Diversity and community structure of ectomycorrhizal mycorrhizal fungi in roots and rhizosphere soil of Abies koreana and Taxus cuspidata in Mt. Halla

  • Ji-Eun Lee;Ahn-Heum Eom
    • Mycobiology
    • /
    • v.50 no.6
    • /
    • pp.448-456
    • /
    • 2022
  • In this study, the roots and rhizosphere soil of Abies koreana and Taxus cuspidata were collected from sites at two different altitudes on Mt. Halla. Ectomycorrhizal fungi (EMF) were identified by Illumina MiSeq sequencing. The proportion of EMF from the roots was 89% in A. koreana and 69% in T. cuspidata. Among EMF in rhizosphere soils, the genus Russula was the most abundant in roots of A. koreana (p < 0.05). The altitude did not affect the biodiversity of EMF communities but influenced fungal community composition. However, the host plants had the most significant effect on EMF communities. The result of the EMF community analysis showed that even if the EMF were isolated from the same altitudes, the EMF communities differed according to the host plant. The community similarity index of EMF in the roots of A. koreana was higher than that of T. cuspidata (p < 0.05). The results show that both altitude and host plants influenced the structure of EMF communities. Conifers inhabiting harsh sub-alpine environments rely strongly on symbiotic relationships with EMF. A. koreana is an endangered species with a higher host specificity of EMF and climate change vulnerability than T. cuspidata. This study provides insights into the EMF communities, which are symbionts of A. koreana, and our critical findings may be used to restore A. koreana.

Projecting forest fire potential in the Baekdudaegan of the Chungcheong region under the SSP scenario climate change using KBDI Drought Index (KBDI 가뭄지수를 이용한 SSP 기후변화 시나리오하의 충청지역 백두대간 산불 잠재력 전망)

  • Choi, Jaeyong;Kim, Su-Jin;Jung, Huicheul;Kim, Sung-Yeol;Moon, Geon-Soo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.25 no.6
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, climate change has been regarded as a major cause of large-scale forest fires worldwide, and there is concern that more frequent and severe forest fires will occur due to the level of greenhouse gas emissions. In this study, the daily Keetch and Byram Drought Index (KBDI) of the Baekdudaegan in Chungcheong region including Sobaeksan, Songnisan, and Woraksan National Parks were calculated to assess effect of climate change on the forest fire potential- severity of annual maximum KBDI and frequency of high KBDI days. The present (2000~2019) and future KBDI(2021~2040, 2041~2060, 2081~2090) were calculated based on the meteorological observation and the ensemble regional climate model of the SSP1-2.6 and SSP5-8.5 scenarios with a spatial resolution of 1-km provided by Korea Meteorological Administration(KMA). Under the SSP5-8.5 scenario, 6.5℃ increase and 14% precipitation increase are expected at the end of the 21st century. The severity of maximum daily KBDI increases by 48% (+50mm), and the frequency of high KBDI days (> 100 KBDI) increases more than 100 days, which means the high potential for serious forest fires. The analysis results showed that Songnisan National Park has the highest potential for forest fire risk and will continue to be high in intensity and frequency in the future. It is expected that the forest vulnerability of the Baekdudaegan in the Chungcheong region will greatly increase and the difficulty in preventing and suppressing forest fires will increase as the abundance of combustible materials increases along with climate changes.