DOI QR코드

DOI QR Code

Diversity and community structure of ectomycorrhizal mycorrhizal fungi in roots and rhizosphere soil of Abies koreana and Taxus cuspidata in Mt. Halla

  • Ji-Eun Lee (Department of Biology Education, Korea National University of Education) ;
  • Ahn-Heum Eom (Department of Biology Education, Korea National University of Education)
  • Received : 2022.10.14
  • Accepted : 2022.11.29
  • Published : 2022.12.31

Abstract

In this study, the roots and rhizosphere soil of Abies koreana and Taxus cuspidata were collected from sites at two different altitudes on Mt. Halla. Ectomycorrhizal fungi (EMF) were identified by Illumina MiSeq sequencing. The proportion of EMF from the roots was 89% in A. koreana and 69% in T. cuspidata. Among EMF in rhizosphere soils, the genus Russula was the most abundant in roots of A. koreana (p < 0.05). The altitude did not affect the biodiversity of EMF communities but influenced fungal community composition. However, the host plants had the most significant effect on EMF communities. The result of the EMF community analysis showed that even if the EMF were isolated from the same altitudes, the EMF communities differed according to the host plant. The community similarity index of EMF in the roots of A. koreana was higher than that of T. cuspidata (p < 0.05). The results show that both altitude and host plants influenced the structure of EMF communities. Conifers inhabiting harsh sub-alpine environments rely strongly on symbiotic relationships with EMF. A. koreana is an endangered species with a higher host specificity of EMF and climate change vulnerability than T. cuspidata. This study provides insights into the EMF communities, which are symbionts of A. koreana, and our critical findings may be used to restore A. koreana.

Keywords

References

  1. Kong WS, Kim KO, Lee SG, et al. Distribution of high mountain plants and species vulnerability against climate change. J Environ Impact Assess. 2014;23(2):119-136. https://doi.org/10.14249/eia.2014.23.2.119
  2. Kim YS, Chang CS, Kim CS, et al. Abies koreana. The IUCN Red List of Threatened Species; 2011:e.T31244A9618913.
  3. Kong WS. Biogeography of native Korean pinaceae. J Geol Soc Korea. 2006;41:73-93.
  4. Kim NS, Lee HC. A study on changes and distributions of Korean fir in sub-alpine zone. J Korea Soc Environ Restor Technol. 2013;16(5):49-57.
  5. Cho MG, Chung JM, Jung HR, et al. Vegetation structure of Taxus cuspidata communities in subalpine zone. J Agric Life Sci. 2012;46:1-10.
  6. Ahn US, Kim DS, Yun YS, et al. The inference about the cause of death of korean fir in Mt. Halla through the analysis of spatial dying pattern-Proposing the possibility of excess soil moisture by climate changes. Korean J Agric for Meteorol. 2019;21:1-28.
  7. Pachauri RK, Allen MR, Barros VR, et al. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change: IPCC 2014.
  8. Bahram M, Polme S, Koljalg U, et al. Regional and local patterns of ectomycorrhizal fungal diversity and community structure along an altitudinal gradient in the hyrcanian forests of Northern Iran. New Phytol. 2012;193(2):465-473. https://doi.org/10.1111/j.1469-8137.2011.03927.x
  9. Sheik CS, Beasley WH, Elshahed MS, et al. Effect of warming and drought on grassland microbial communities. Isme J. 2011;5(10):1692-1700. https://doi.org/10.1038/ismej.2011.32
  10. Cairney JW, Meharg AA. Interactions between ectomycorrhizal fungi and soil saprotrophs: implications for decomposition of organic matter in soils and degradation of organic pollutants in the rhizosphere. Can J Bot. 2002;80(8):803-809. https://doi.org/10.1139/b02-072
  11. Smith SE, Read DJ. Mycorrhizal symbiosis. 3rd ed. San Diego: Academic Press; 2010.
  12. Van Der Heijden MG, Bardgett RD, Van Straalen NM. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett. 2008;11(3):296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
  13. Prieto I, Roldan A, Huygens D, et al. Species-specific roles of ectomycorrhizal fungi in facilitating interplant transfer of hydraulically redistributed water between Pinus halepensis saplings and seedlings. Plant Soil. 2016;406(1-2):15-27. https://doi.org/10.1007/s11104-016-2860-y
  14. Sebastiana M, Martins J, Figueiredo A, et al. Oak protein profile alterations upon root colonization by an ectomycorrhizal fungus. Mycorrhiza. 2017;27(2):109-128. https://doi.org/10.1007/s00572-016-0734-z
  15. Tedersoo L, May T, Smith M. Ectomycorrhizal lifestyle in fungi: patterns of evolution and distribution. Mycorrhiza. 2010;20(4):217-263. https://doi.org/10.1007/s00572-009-0274-x
  16. Kivlin SN, Emery SM, Rudgers JA. Fungal symbionts alter plant responses to global change. Am J Bot. 2013;100(7):1445-1457.
  17. Bennett AE, Classen AT. Climate change influences mycorrhizal fungal-plant interactions, but conclusions are limited by geographical study bias. Ecology. 2020;101(4):e02978.
  18. V€are H, Vestberg M, Ohtonen R. Shifts in mycorrhiza and microbial activity along an oroarctic altitudinal gradient in Northern fennoscandia. Arct Antarct Alp. 1997;29(1):93-104.
  19. Korner C. The use of 'altitude'in ecological research. Trends Ecol Evol. 2007;22(11):569-574. https://doi.org/10.1016/j.tree.2007.09.006
  20. Fra˛c M, Hannula SE, Belka M, et al. Fungal biodiversity and their role in soil health. Front Microbiol. 2018;9:707.
  21. MacLean D, Jones JD, Studholme DJ. Application of' next-generation' sequencing technologies to microbial genetics. Nat Rev Microbiol. 2009;7(4):287-296.
  22. Bellemain E, Carlsen T, Brochmann C, et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189.
  23. Yoon SH, Ha SM, Kwon SJ, et al. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67(5):1613-1617. https://doi.org/10.1099/ijsem.0.001755
  24. Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996-998. https://doi.org/10.1038/nmeth.2604
  25. Keylock C. Simpson diversity and the shannon-wiener index as special cases of a generalized entropy. Oikos. 2005;109(1):203-207. https://doi.org/10.1111/j.0030-1299.2005.13735.x
  26. Grandin U. PC-ORD version 5: a user-friendly toolbox for ecologists. Appl Veg Sci. 2006;17(6):843-844.
  27. Lee JE, Eom AH. Ectomycorrhizal fungal diversity on Abies korea and Taxus cuspidata at two altitudes in Mt. Halla. Kor J Mycol. 2019;47:199-208.
  28. Henkel TW, Aime MC, Uehling JK, et al. New species and distribution records of Clavulina (Cantharellales, Basidiomycota) from the Guiana Shield. Mycologia. 2011;103(4):883-894. https://doi.org/10.3852/10-355
  29. Olariaga I, Jugo BM, Garcia-Etxebarria K, et al. Species delimitation in the european species of Clavulina (Cantharellales, Basidiomycota) inferred from phylogenetic analyses of ITS region and morphological data. Mycol Res. 2009;113(11):1261-1270. https://doi.org/10.1016/j.mycres.2009.08.008
  30. Kirk PM, Cannon PF, David J, et al. Ainsworth and bisby's dictionary of the fungi. 9th ed. UK: CABI Bioscience; 2001.
  31. Dahlberg A, Jonsson L, Nylund J-E. Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce Forest in South Sweden. Can J Bot. 1997;75(8):1323-1335. https://doi.org/10.1139/b97-844
  32. Gardes M, Bruns T. Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above-and below-ground views. Can J Bot. 1996; 74(10):1572-1583. https://doi.org/10.1139/b96-190
  33. Taylor D, Bruns T. Community structure of ectomycorrhizal fungi in a Pinus muricata Forest: minimal overlap between the mature Forest and resistant propagule communities. Mol Ecol. 1999;8(11):1837-1850. https://doi.org/10.1046/j.1365-294x.1999.00773.x
  34. Kim CS, Jo JW, Lee H, et al. Comparison of soil higher fungal communities between dead and living Abies koreana in Mt. Halla, the Republic Of Korea. Mycobiology. 2020;48(5):364-372. https://doi.org/10.1080/12298093.2020.1811193
  35. Song JH, Han SH, Lee SH, et al. Changes for stand structure of Abies koreana forest at the yeongsil area of Mt. Hallasan for six years (from 2011 to 2017). J Korean for Soc. 2019;108:1-9.
  36. Park JH, Choi EB, Kim YJ, et al. The associations of the cambial activities of Abies koreana and Taxus cuspidata in different diameter classes at the height of breast in the subalpine zone of Mt. Dukyou with the degree-days. KJEE. 2018;2:89.
  37. Oh SJ, Koh JG, Kim ES, et al. Diurnal and seasonal variation of chlorophyll fluorescence from Korean fir plants on Mt. Halla. Korean J Environ Biol. 2001;19:43-48.
  38. Lim JH, Woo SY, Kwon MJ, et al. Photosynthetic capacity and water use efficiency under different temperature regimes on healthy and declining Korean fir in Mt. Halla. Kor J for Soc. 2006;95:705-710.
  39. Song KM, Kang YJ, Hyeon HJ. Vegetation structure at the slope direction and characteristic of seedlings of Abies koreana in hallasan Mountain. J Environ Sci Int. 2014;23(1):39-46. https://doi.org/10.5322/JESI.2014.23.1.39
  40. Kernaghan G, Currah R, Bayer R. Russulaceous ectomycorrhizae of Abies lasiocarpa and Picea engelmannii. Can J Bot. 1997;75(11):1843-1850. https://doi.org/10.1139/b97-896
  41. Jarvis SG, Woodward S, Taylor AF. Strong attitudinal partitioning in the distributions of ectomycorrhizal fungi along a short (300 m) elevation gradient. New Phytol. 2015;206:1145-1155. https://doi.org/10.1111/nph.13315
  42. Calef MP, David McGuire A, Epstein HE, et al. Analysis of vegetation distribution in interior Alaska and sensitivity to climate change using a logistic regression approach. J Biogeogr. 2005;32(5):863-878. https://doi.org/10.1111/j.1365-2699.2004.01185.x
  43. Gardes M, Dahlberg A. Mycorrhizal diversity in arctic and alpine tundra: an open question. New Phytol. 1996;133(1):147-157.