DOI QR코드

DOI QR Code

Return Period Estimation of Droughts Using Drought Variables from Standardized Precipitation Index

표준강수지수 시계열의 가뭄특성치를 이용한 가뭄 재현기간 산정

  • 곽재원 (인하대학교 사회기반시스템공학부 토목공학과) ;
  • 이성대 (한라대학교 토목공학과) ;
  • 김연수 (인하대학교 사회기반시스템공학부 토목공학과) ;
  • 김형수 (인하대학교 사회기반시스템공학부 토목공학과)
  • Received : 2012.08.02
  • Accepted : 2013.05.07
  • Published : 2013.08.31

Abstract

Drought is one of the severe natural disasters and it can profoundly affect our society and ecosystem. Also, it is a very important variable for water resources planning and management. Therefore, the drought is analyzed in this study to understand the drought distribution and trend. The Standard Precipitation Index (SPI) is estimated using precipitation data obtained from 55 rain gauge stations in South Korea and the SPI based drought variables such as drought duration and drought severity were defined. Drought occurrence and joint probabilistic analysis for SPI based drought variables were performed with run theory and copula functions. And then the return period and spatial distribution of droughts on the South Korea was estimated. As the results, we have shown that Gongju and Chungju in Chungcheong-do and Wonju, Inje, Jeongseon, Taebeak in Gangwon-do have vulnerability to droughts.

가뭄은 중요한 자연재해의 하나로서 수자원 관리 부분에서 매우 중요한 인자이다. 본 연구에서는 대한민국의 55개 기상청 관측소를 대상으로 SPI 지수에 따른 가뭄기간과 가뭄심도를 정의하고, 코풀라 이론을 이용하여 두 가뭄변수의 결합 확률 분포를 유도하였다. 또한 이를 이용하여 가뭄의 발생양상을 고찰하고 가뭄의 재현기간으로 제시하였으며, 대한민국을 대상으로 가뭄의 공간적 분포를 분석하였다. 연구에서 도출된 가뭄의 재현기간별 SPI 지수로부터 대한민국의 충청도의 공주 및 충주 인근, 강원도의 원주, 인제, 정선, 태백 등의 지역이 상대적으로 가뭄에 취약한 것으로 도출되었다.

Keywords

References

  1. Bonaccorso, B., Cancelliere, A., and Rossi, G. (2003). "An analytical formulation of return period of drought severity." Stochastic Environmental Research and Risk Assessment, Vol. 17, No. 3, pp. 157-174. https://doi.org/10.1007/s00477-003-0127-7
  2. Chang, T.J., and Kleopa, X.A. (1991). "A proposed method for drought monitoring." Water Resources Bulletin, Vol. 27, pp. 275-281. https://doi.org/10.1111/j.1752-1688.1991.tb03132.x
  3. Choi, S.J., Moon, J.W., Lee, D.R., Kang, S.K., and Seo, J.S. (2011). "Evaluation of Water Supply Capacity of Agriculture Reservoir According to Drought Frequency." Proceedings of Korea Water Resources Association 2011, KWRA, Dae-gu, Korea, pp. 449-449.
  4. Gonzalez, J., and Valdes, J. B. (2003). "Bivariate Drought Recurrence Analysis Using Tree Ring Reconstructions." Journal of Hydrologic Engineering, ASCE, Vol. 8, No. 5, pp. 247-258. https://doi.org/10.1061/(ASCE)1084-0699(2003)8:5(247)
  5. Guttman, N.B. (1999). "Accepting the standardized precipitation index: a calculation algorithm." Journal of the American Water Resources Association, AWRA, Vol. 35, No. 2, pp. 311-322. https://doi.org/10.1111/j.1752-1688.1999.tb03592.x
  6. Kao, S.C., and Govindaraju, R.S. (2008). "Trivariate statistical analysis of extreme rainfall events via the Plackett family of Copulas."Water Resour Res, Vol. 44, No. 2, W02415.
  7. Kim, B.K., Kim, S.D., Lee, J.S., and Kim, H.S. (2006). "Spatio-Temporal Characteristics of Droughts in Korea: Construction of Drought Severity-Area-Duration Curves." Journal ofKorean Society of Civil Engineers, KSCE, Vol. 26, No. 1B, pp. 69-78.
  8. Kim, T.W., Valdes, J.B., and Yoo, C. (2006b). "Nonparametric approach for bivariate drought characterization using Palmer drought index." Journal of Hydrologic Engineering, ASCE, Vol. 11, No. 2, pp. 134-143. https://doi.org/10.1061/(ASCE)1084-0699(2006)11:2(134)
  9. Kim, T.W., Valdes, J.B., and Aparicio, J. (2006a). "Spatial characterization of droughts in the Conchos River Basin based on bivariate frequency analysis."Water International, Vol. 31, No. 1, pp. 50-58. https://doi.org/10.1080/02508060608691914
  10. Kwak, J.W. (2012a). Drought Analysis Using Copula Theory and Impact of Climate Change on Droughts. Ph.D. Dissertation, Inha University, Incheon, Korea, pp. 23-110.
  11. Kwak, J.W., Kim, D.G., Lee, J.S., and Kim, H.S. (2012b). "Hydrological Drought Analysis using Copula Theory." Journal of Korean Society of Civil Engineers, KSCE, Vol. 32, No. 3B, pp. 161-168.
  12. Kwak, J.W., Kim, D.G., Noh, H.S., Vijay, P., Singh, and Kim, H.S. (2013). "Case Study: Hydrological Drought Analysis on Namhan River Basin, Korea-(1) Derivation of Joint Probability Distribution." Journal of Hydrologic Engineering, Accepted.
  13. Kyoung, M. (2010). Assessment of Climate Change Effect on Drought and Frequency Based Precipitation. Ph.D. Dissertation, Inha University, Incheon, Korea, pp. 72-98.
  14. Kyoung, M., Kim, S., Kim, B.K., and Kim, H.S. (2007). "Construction of Hydrological Drought Severity-Area-Duration Curves Using Cluster Analysis." Journal of Korean Society of Civil Engineers, KSCE, Vol. 27, No. 3B, pp. 267-276.
  15. Lee, J.H., and Kim, C.J. (2011). "Derivation of Drought Severity-Duration-Frequency Curves Using Drought Frequency Analysis." Journal of Korea Water Resources Association, KWRA, Vol. 44, No. 11, pp. 889-902. https://doi.org/10.3741/JKWRA.2011.44.11.889
  16. Lee, J.H., Seo, J.W., and Kim, C.J. (2012). "Analysis on Trends, Periodicities and Frequencies of Korean Drought Using Drought Indices." Journal of Korea Water Resources Association, KWRA, Vol. 45, No. 1, pp. 75-89. https://doi.org/10.3741/JKWRA.2012.45.1.75
  17. Lee, T., Modarres, R., and Ouarda, T.B.M.J. (2012). Data based analysis of bivariate copula tail dependence for drought duration and severity. Hydrological Processes. DOI:10.1002/hyp.923
  18. Liu, C.L., Zhang, Q., Vijay, P.S., and Cui, Y. (2011). "Copula-Based evaluation of drought variations in Guangdong, South China." Natural Hazards, Vol. 59, No. 3, pp. 1533-1546. https://doi.org/10.1007/s11069-011-9850-4
  19. McKee, T.B., Doesken, N.J., and Kleist, J. (1993). "The relationship of drought frequency and duration to time scales." 8th Conference on Applied Climatology, American Meteorological Society, Boston, USA, Vol. 17, No. 22, pp. 179-183.
  20. McKee, T.B., Doesken, N.J., and Kleist, J. (1995). "Drought monitoring with multiple time scales." 9th Conference on Applied Climatology, American Meteorological Society, Dallas, USA, Vol. 18, No. 21, pp. 211-215.
  21. Michele, C.D., and Salvadori, G. (2010). "Multivariate Extreme Value models in hydrology: A Copula approach." Geophysical Research Abstracts, EGU 2010, Vienna, Austria, Vol. 12, pp. 9486.
  22. Mishra, A.K., Desai, V.R., and Vijay P. Singh (2007). "Drought Forecasting Using a Hybrid Stochastic and Neural Network Model." Journal of Hydrologic Engineering, ASCE, Vol. 12, No. 6, pp. 626-638. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:6(626)
  23. Moye, L.A., Kapadia, A.S., Cech, I.M., and Hardy, R.J. (1988). "The theory of runs with applications to drought prediction." Journal of Hydrology, Vol. 103, No. 1, pp. 127-137. https://doi.org/10.1016/0022-1694(88)90010-8
  24. Nadarajah, S. (2007). "A bivariate gamma model for drought." Water Resour Res, Vol. 43, W08501.
  25. Palmer, W.C. (1968). "Keeping track of crop moisture conditions, nationwide: The new crop moisture index." Weatherwise, Vol. 21, pp. 156-161. https://doi.org/10.1080/00431672.1968.9932814
  26. Ryoo, S.R., and Yoo, C.S. (2004). "AModified Standardized Precipitation Index(MSPI) and Its Application." Journal of Korea Water Resources Association, KWRA, Vol. 37, No. 7, pp. 553-567 https://doi.org/10.3741/JKWRA.2004.37.7.553
  27. Shiau, J.T. (2003). "Return period of bivariate distributed hydrological events." Stochastic Environmental Research and Risk Assessment, Vol. 17, No. 2, pp. 42-57. https://doi.org/10.1007/s00477-003-0125-9
  28. Shiau, J.T. (2006). "Fitting drought duration and severity with two-dimensional copulas." Water Resources Management, Vol. 20, No. 5, pp. 795-815. https://doi.org/10.1007/s11269-005-9008-9
  29. Shiau, J.T., and Modarres, R. (2009). "Copula-based drought severity-duration-frequency analysis in Iran."Meteorological Applications, Vol. 16, No. 4, pp. 481-489. https://doi.org/10.1002/met.145
  30. Shiau, J.T., Feng, S., and Nadarajah, S. (2007). "Assessment of hydrological droughts for the Yellow River, China, using copulas." Hydrological Processes, Vol. 21, No. 16, pp. 2157-2163. https://doi.org/10.1002/hyp.6400
  31. Sklar, K. (1959). "Fonctions de repartition 'a n dimensions et leura marges." Publications de l'Institut de Statistique, L'University de Paris, Vol. 8, pp. 229-231.
  32. Song, S., and Vijay, P. Singh (2010). "Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data." Stochastic Environmental Research and Risk Assessment, Vol. 24, No. 3, pp. 425-444. https://doi.org/10.1007/s00477-009-0331-1
  33. Wong, G., Lambert, M.F., and Metcalfe, A.V. (2008). "Trivariate copulas for characterization of droughts." ANZIAM Journal, Vol. 49, pp. 306-323.
  34. Wong, G., Lambert, M.F., Leonard, M., and Metcalfe, A.V. (2009). "Drought analysis using trivariate Copulas conditional on climate states." Journal of Hydrologic Engineering, ASCE, Vol. 15, No. 2, pp. 129-141.
  35. Yeon, J.M., Byun, S.H., Lee, J.K., and Kim, T. (2007). "Evaluation of Droughts in Seoul Using Two-Dimensional Drought Frequency Analysis." Journal of Korea Water Resources Association, KWRA, Vol. 40, No. 4, pp. 335-343. https://doi.org/10.3741/JKWRA.2007.40.4.335
  36. Yevjevich, V. (1967). An objective approach to definitions and investigations of continental hydrologic drought. Hydrology Paper No. 23, Fort Collins, USA, Vol. 23.
  37. Yoo, J.Y., Choi, M.H., and Kim, T. (2010). "Spatial Analysis of Drought Characteristics in Korea Using Cluster Analysis." Journal of Korea Water Resources Association, KWRA, Vol. 43, No. 1, pp. 15-24. https://doi.org/10.3741/JKWRA.2010.43.1.15
  38. Zhang, Y., and Song, S.B. (2010). "Application of Archimedean Copulas in Multi-variable Drought Distribution." Journal of Irrigation and Drainage, Vol. 3, p. 16.

Cited by

  1. Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region 2017, https://doi.org/10.1007/s10040-017-1665-2
  2. Analysis of Future Meteorological Drought Index Considering Climate Change in Han-River Basin vol.18, pp.4, 2016, https://doi.org/10.17663/JWR.2016.18.4.432
  3. Projection of Temporal Trends on Drought Characteristics using the Standardized Precipitation Evapotranspiration Index (SPEI) in South Korea vol.57, pp.1, 2015, https://doi.org/10.5389/KSAE.2015.57.1.037
  4. Assessment of the Impact of Climate Change on Drought Characteristics in the Hwanghae Plain, North Korea Using Time Series SPI and SPEI: 1981–2100 vol.9, pp.8, 2017, https://doi.org/10.3390/w9080579
  5. Estimation and Assessment of Bivariate Joint Drought Index based on Copula Functions vol.47, pp.2, 2014, https://doi.org/10.3741/JKWRA.2014.47.2.171
  6. A Study on Target Standardized Precipitation Index in Korea vol.34, pp.4, 2014, https://doi.org/10.12652/Ksce.2014.34.4.1117
  7. Analysis of Drought Intensity and Trends Using the Modified SPEI in South Korea from 1981 to 2010 vol.10, pp.3, 2018, https://doi.org/10.3390/w10030327