• Title/Summary/Keyword: Vortex Motion

Search Result 247, Processing Time 0.026 seconds

Coupling Behavior of Pressure and Heat Release Oscillations by Swirl Injection in Hybrid Rocket (스월에 의한 하이브리드 로켓의 연소압력과 연소반응 진동의 결합 거동)

  • Kim, Jungeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.567-574
    • /
    • 2018
  • Swirl injection induces not only the increase in fuel regression rate but also the reduction of combustion pressure oscillation. This acts, in turn, to stabilize combustion process. Thus, this study primarily focuses on the change in flow structure in the main chamber by swirl injection. Then examining the change in flow structure was done to understand the physical process for stabilizing combustion. In the results, the application of swirl injection could suppress the generation of p' and q' in 500Hz band and could shift the phase difference and cross correlation. Further investigations with combustion visualization also show that the development of helical motion near surface region affects the small-sized vortex generation and shedding yielding combustion stabilization eventually.

Numerical Study of Density-stratified Flow Past Two 3D Hills - Aligned in Tandem - (두 개의 3차원 지형물 주위의 성층 유동 해석 - 주 유동방향으로 정렬된 경우 -)

  • Choi, Choon-Bum;Yang, Kyung-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1218-1227
    • /
    • 2006
  • In this paper a parametric study using an immersed boundary method has been carried out to investigate the effects of stable density stratification on the wakes past two identical three-dimensional hills aligned in tandem. The Reynolds number based on the uniform inlet velocity and twice the hill height was fixed at Re=300 while the Froude number based on the inlet velocity and the hill height was retained at Fr=0.2. Neutral flow without density stratification was also computed for comparison. Under a strong stratification, vertical motion of fluid particles over the three-dimensional hills is suppressed and the wake structures behind the hills become planar. Depending on the distance between the two hills, the flow pattern of each wake is significantly affected by the stratification. There is a critical hill distance at which flow characteristics drastically change. Qualitative and quantitative features of the wake interaction are reported.

A study of wind turbine power generation and turbine/tower interaction using large eddy simulation

  • Howard, R.J.A.;Pereira, J.C.F.
    • Wind and Structures
    • /
    • v.9 no.2
    • /
    • pp.95-108
    • /
    • 2006
  • Wind turbines are highly complex structures for numerical flow simulation. They normally comprise of a turbine mounted on a tower thus the movement of the turbine blades and the blade/tower interaction must be captured. In addition the ground effect should also be included. There are many more important features of wind turbines and it is difficult to include all of them. A simplified set of features is chosen here for both the turbine and the tower to show how the method can begin to identify the main points connected with wind turbine wake generation and tip vortex tower interaction. An approach to modelling the rotating blades of a turbine is proposed here. The model uses point forces based on blade element theory to model the blades and takes into account their time dependent motion. This means that local instantaneous velocities can be used as a basis for the blade element theory. The model is incorporated into a large eddy simulation code and, although many important features are left out of the model, the velocity/power performance relation is generally of the correct order of magnitude. Suggested improvements to the method are discussed.

Partitioned coupling strategies for fluid-structure interaction with large displacement: Explicit, implicit and semi-implicit schemes

  • He, Tao
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.423-448
    • /
    • 2015
  • In this paper the unsteady fluid-structure interaction (FSI) problems with large structural displacement are solved by partitioned solution approaches in the arbitrary Lagrangian-Eulerian finite element framework. The incompressible Navier-Stokes equations are solved by the characteristic-based split (CBS) scheme. Both a rigid body and a geometrically nonlinear solid are considered as the structural models. The latter is solved by Newton-Raphson procedure. The equation governing the structural motion is advanced by Newmark-${\beta}$ method in time. The dynamic mesh is updated by using moving submesh approach that cooperates with the ortho-semi-torsional spring analogy method. A mass source term (MST) is introduced into the CBS scheme to satisfy geometric conservation law. Three partitioned coupling strategies are developed to take FSI into account, involving the explicit, implicit and semi-implicit schemes. The semi-implicit scheme is a mixture of the explicit and implicit coupling schemes due to the fluid projection splitting. In this scheme MST is renewed for interfacial elements. Fixed-point algorithm with Aitken's ${\Delta}^2$ method is carried out to couple different solvers within the implicit and semi-implicit schemes. Flow-induced vibrations of a bridge deck and a flexible cantilever behind an obstacle are analyzed to test the performance of the proposed methods. The overall numerical results agree well with the existing data, demonstrating the validity and applicability of the present approaches.

CFD modelling of free-flight and auto-rotation of plate type debris

  • Kakimpa, B.;Hargreaves, D.M.;Owen, J.S.;Martinez-Vazquez, P.;Baker, C.J.;Sterling, M.;Quinn, A.D.
    • Wind and Structures
    • /
    • v.13 no.2
    • /
    • pp.169-189
    • /
    • 2010
  • This paper describes the use of coupled Computational Fluid Dynamics (CFD) and Rigid Body Dynamics (RBD) in modelling the aerodynamic behaviour of wind-borne plate type objects. Unsteady 2D and 3D Reynolds Averaged Navier-Stokes (RANS) CFD models are used to simulate the unsteady and non-uniform flow field surrounding static, forced rotating, auto-rotating and free-flying plates. The auto-rotation phenomenon itself is strongly influenced by vortex shedding, and the realisable k-epsilon turbulence modelling approach is used, with a second order implicit time advancement scheme and equal or higher order advection schemes for the flow variables. Sequentially coupling the CFD code with a RBD solver allows a more detailed modelling of the Fluid-Structure Interaction (FSI) behaviour of the plate and how this influences plate motion. The results are compared against wind tunnel experiments on auto-rotating plates and an existing 3D analytical model.

Leveling-Off of the Resistance at Low Temperatures in Granular In/InO$_x$ Thin Films

  • Kim, Ki-Joon;Lee, Hu-Jong
    • 한국초전도학회:학술대회논문집
    • /
    • v.9
    • /
    • pp.261-261
    • /
    • 1999
  • We observed leveling-off of the resistance in granular In/InO$_x$ thin films in the zero-temperature limit. The temperature T$_b$ at which the leveling-off appears gets larger as the sheet resistance R$_n$ increases. This is consistent with the concept that the leveling-off of the resistance is due to the dissipation of the bosonic phase and that the dissipation is enhanced as the resistance increases. The magnetic field dependence of the saturated resistance R$_b$ at low temperatures fits the modified square-root cusp-like form R$_b$/R$_n$=α exp[-b(B/B$_c$-1)$^{-1/2}$] for the magnetic field in the range B$_c$$_f$ where B$_c$ is the onset magnetic field of the resistance leveling-off. α and b are constants of order 1. For B>B$_f$ tansport properties are described by the theory of the fermi insulator. From the results, we attribute the leveling-off to the dissipative quantum tunneling of vortices, which supports the models predicting the vortex-motion-induced insulating phase related with the concept like"dirty boson" [1]l and "hose metal" [2].

  • PDF

Development of an Unsteady Aerodynamic Analysis Module for Rotor Comprehensive Analysis Code

  • Lee, Joon-Bae;Yee, Kwan-Jung;Oh, Se-Jong;Kim, Do-Hyung
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.10 no.2
    • /
    • pp.23-33
    • /
    • 2009
  • The inherent aeromechanical complexity of a rotor system necessitated the comprehensive analysis code for helicopter rotor system. In the present study, an aerodynamic analysis module has been developed as a part of rotorcraft comprehensive program. Aerodynamic analysis module is largely classified into airload calculation routine and inflow analysis routine. For airload calculation, quasi-steady analysis model is employed based on the blade element method with the correction of unsteady aerodynamic effects. In order to take unsteady effects - body motion effects and dynamic stall - into account, aerodynamic coefficients are corrected by considering Leishman-Beddoes's unsteady model. Various inflow models and vortex wake models are implemented in the aerodynamic module to consider wake induced inflow. Specifically, linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's induced inflow distribution and sectional normal force coefficients of AH-1G. In order to validate unsteady aerodynamic model, 2-D unsteady model for NACA0012 airfoil is validated against aerodynamic coefficients of McAlister's experimental data.

Broadband Noise Analysis of Horizontal Axis Wind Turbines Including Low Frequency Noise (수평축 풍력발전기의 저주파소음을 포함한 광대역소음 해석에 관한 연구)

  • Him, Hyun-Jung;Kim, Ho-Geun;Lee, Soo-Gab
    • New & Renewable Energy
    • /
    • v.3 no.3
    • /
    • pp.45-53
    • /
    • 2007
  • This paper demonstrates a computational method in predicting aerodynamic noise generated from wind turbines. Low frequency noise due to displacement of fluid and leading fluctuation, according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Aerodynamic flow in the vicinity of the blade should be obtained first, while noise source modelling need them as numerical inputs. Vortex Lattice Method(VLM) is used to compute aerodynamic conditions near blade. In the use of program X-foil [M.Drela] boundary layer characteristics are calculated to obtain airfoil self noise. Wind turbine blades are divided into spanwise unit panels, and each panel is considered as an independent source. Retarded time is considered, not only in low frequency noise but also In turbulence ingestion noise and airfoil self noise prediction. Numerical modelling is validated with measurement from NREL [AOC15/50 Turbine) and ETSU [Markham's VS45] wind turbine noise measurements.

  • PDF

Atomization of Liquid Via a Combined System of Air Pressure and Electric Field (공기 압력과 전기장이 접목된 액적 분무에 관한 연구)

  • Hwang, Sangyeon;Seong, Baekhoon;Byun, Doyoung
    • Journal of the Korean Society of Visualization
    • /
    • v.12 no.2
    • /
    • pp.9-12
    • /
    • 2014
  • Conventional electrospray and air spray methods have the vulnerabilities of limited flow rate (throughput) and droplet size, respectively. Since high throughput with uniform size of droplet is required for various applications, an improved technique should be adopted. Here, we report a combined system of an air pressure and an electric field and evaluate the atomization performance of it. The air flow allowed applying high flow rate range and the electric field reinforced the atomization process to generate fine droplets. A correlation between two forces was investigated by comparing the droplet produced by each method. The atomized droplets were measured and visualized by image processing and a particle image velocimetry (PIV). The quantitative results were achieved from the parametric space and the effect of both forces was analyzed. The motion of charged droplets followed the outer electric field rather than the complex vortex in the shear layer so that the droplets accelerated directly toward the grounded collector.

Numerical Analysis of Laminar Flows in the Two Dimensional Sector Cavity by Finite Analytic Method in Polar Coordinate System (極座標系 有限解析法 에 의한 2次元 부채꼴 캐비티 의 層流流動 解析)

  • 배주찬;강신영
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.3
    • /
    • pp.185-194
    • /
    • 1984
  • The finite analytic method is extended to solve the steady two dimensional Navier-Stokes equation of stream functions and vorticity in polar coordinate system. The method is applied to calculate laminar flows in a sector cavity where the motion is induced by the rotation of the outer wall. Numerical solutions are obtained in the range of Reynolds number 0 to 5000 and aspect ratios 0.50, 1.20, 1.60 and 1.92. The finite analytic method is verfied to be accurate and fast convergent at high Reynolds numbers. It is promising as a numerical method of viscous flows and heat transfer. Flows in sector cavities show different flow structures and formation of secondary vortex with aspect ratios and Reynolds numbers in comparison with rectangular cavities.