Browse > Article
http://dx.doi.org/10.5139/IJASS.2009.10.2.023

Development of an Unsteady Aerodynamic Analysis Module for Rotor Comprehensive Analysis Code  

Lee, Joon-Bae (Department of Aerospace Engineering, Pusan National University)
Yee, Kwan-Jung (Department of Aerospace Engineering, Pusan National University)
Oh, Se-Jong (Department of Aerospace Engineering, Pusan National University)
Kim, Do-Hyung (Department of Rotor System, Korea Aerospace Research Institute)
Publication Information
International Journal of Aeronautical and Space Sciences / v.10, no.2, 2009 , pp. 23-33 More about this Journal
Abstract
The inherent aeromechanical complexity of a rotor system necessitated the comprehensive analysis code for helicopter rotor system. In the present study, an aerodynamic analysis module has been developed as a part of rotorcraft comprehensive program. Aerodynamic analysis module is largely classified into airload calculation routine and inflow analysis routine. For airload calculation, quasi-steady analysis model is employed based on the blade element method with the correction of unsteady aerodynamic effects. In order to take unsteady effects - body motion effects and dynamic stall - into account, aerodynamic coefficients are corrected by considering Leishman-Beddoes's unsteady model. Various inflow models and vortex wake models are implemented in the aerodynamic module to consider wake induced inflow. Specifically, linear inflow, dynamic inflow, prescribed wake and free wake model are integrated into the present module. The aerodynamic characteristics of each method are compared and validated against available experimental data such as Elliot's induced inflow distribution and sectional normal force coefficients of AH-1G. In order to validate unsteady aerodynamic model, 2-D unsteady model for NACA0012 airfoil is validated against aerodynamic coefficients of McAlister's experimental data.
Keywords
Linear Inflow; Dynamic Inflow; Prescribed Wake; Free Wake; Blade Element Method; Unsteady Effect;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. G. Leishman, "Principle of Helicopter Aerodynamics 2nd Edition", Cambridge University Press, 2006.
2 K. W. McAlister and L. W. Carr, "Water Tunnel Experiments on an Oscillating Airfoil", NASA TM 78446, 1976.
3 G. H. Vatistas, V. Kozel and W. Mih, "A Simpler Model for Concentrated Vortices", Experiments in Fluids, Vol. 11, 1991, pp. 73-76.   DOI
4 H. B. Squire, "The Growth of a Vortex in Turbulent Flow", Aeronautical Quarterly, Vol. 16, Aug. 1965, pp. 302-306.
5 J. G. Leishman, T. S. Beddoes, "A Generalized Model for Airfoil Unsteady Aerodynamic Behavior and Dynamic Stall Using the Indicial Method", Proceedings of the 42nd Annual Forum of the American Helicopter Society, Washington D.C., June 1986.
6 Z. Yang, L. N. Sankar, M. J. Smith and O. Bauchau, "Recent Improvements to a Hybrid Method for Rotors in Forward Flight", Journal of Aircraft, Vol. 39, No. 5, Sep.-Oct., 2002, pp. 804-812.   DOI   ScienceOn
7 G. S. Bir, I. Chopra and et al., “University of Maryland Advanced Rotorcraft Code(UMARC) Theory Manual", Technical Report UM-AERO 94-18, Center for Rotorcraft Education and Research, University of Maryland, College Park, July 1994.
8 C. J. He, "Development and Application of a Generalized Dynamic Wake Theory for Lifting Rotors", Doctor Thesis, Georgia Institute of Technology, 1989.
9 D. A. Peters and C. J. He, "Finite State Induced Flow Models Part II : Three- Dimensional Rotor Disk", Journal of Aircraft, Vol. 32, No. 2, 1995, pp. 323-333.   DOI   ScienceOn
10 N. M. Komerath and O. A. Schreiber, "Implementation and Validation of a Wake Model for Low-Speed Forward Flight", Final Report, NASA Grant NAG-1-693, Sep., 1987.
11 J. Lee, K. Yee and S. Oh, "Numerical Investigation of Dual Rotors Using a Time- Marching Free-Wake Method", Proc. Of American Helicopter Society 64th Annual Forum, Montreal, Canada, April 29-May 1, 2008.
12 J. W. Elliot, S. L. Althoff and R. H. Sailey, "Inflow Measurement Made with a Laser Velocimeter on a Helicopter Model in Forward Flight-$\mu$=0.15", NASA TM 100541, 1988.
13 R. C. Baker and B. Charlie, “Nonlinear unstable systems", International Journal of Control, Vol. 23, No. 4, 1989, pp. 123-145.