DOI QR코드

DOI QR Code

Coupling Behavior of Pressure and Heat Release Oscillations by Swirl Injection in Hybrid Rocket

스월에 의한 하이브리드 로켓의 연소압력과 연소반응 진동의 결합 거동

  • Kim, Jungeun (Dept. of Aerospace Engineering, Konkuk University) ;
  • Lee, Changjin (Dept. of Aerospace Engineering, Konkuk University)
  • Received : 2018.01.15
  • Accepted : 2018.06.30
  • Published : 2018.07.01

Abstract

Swirl injection induces not only the increase in fuel regression rate but also the reduction of combustion pressure oscillation. This acts, in turn, to stabilize combustion process. Thus, this study primarily focuses on the change in flow structure in the main chamber by swirl injection. Then examining the change in flow structure was done to understand the physical process for stabilizing combustion. In the results, the application of swirl injection could suppress the generation of p' and q' in 500Hz band and could shift the phase difference and cross correlation. Further investigations with combustion visualization also show that the development of helical motion near surface region affects the small-sized vortex generation and shedding yielding combustion stabilization eventually.

스월은 연료의 후퇴율 증가뿐 아니라 연소 압력의 진동을 감소시키며, 하이브리드 로켓의 연소안정화에 기여하는 것으로 알려져 있다. 따라서 스월 산화제 분사에 의한 주연소실 내부의 유동 구조의 변화를 이해하고 연소안정화의 물리적 과정을 실험적으로 연구하였다. 결과에 의하면, 스월은 주연소실의 유동 구조를 변화시켜 후연소실의 500Hz 대역 p'과 q'의 발생을 억제할 뿐 아니라 두 진동의 위상차를 변화하여 상호결합(coupling)에 영향을 주고 있음을 확인했다. 또한 후연소실 화염 가시화를 통하여 스월에 의한 선회운동량의 증가로 와류발생과 흘림 등이 변화하여 연소안정화에 기여하는 것으로 분석됐다.

Keywords

References

  1. Karabeyoglu, M., and Altman, D., "Dynamics Modeling of Hybrid Rocket Combustion," Journal of Propulsion and Power, Vol. 15, No. 4, 1999, pp. 562-571. https://doi.org/10.2514/2.5464
  2. Park, K., and Lee, C., "Low Frequency Instability in Laboratory-scale Hybrid Rocket Motors," Aerospace Science and Technology, Vol. 42, April 2015, pp. 148-157. https://doi.org/10.1016/j.ast.2015.01.013
  3. Kim, D. and Lee, C., "Destabilization of the shear layer in the post-chamber of a hybrid rocket." Journal of Mechanical Science and Technology, Vol. 30, April, 2016, pp. 1671-1679. https://doi.org/10.1007/s12206-016-0323-2
  4. Moon, Y. J., and Lee, C., "Flame Interaction with Shear Layer Flow in the Post Chamber of Hybrid Rocket," Journal of The Korean Society for Aeronautical and Space Sciences, Vol. 44, No. 7, 2016, pp. 585-592. https://doi.org/10.5139/JKSAS.2016.44.7.585
  5. Moon, Y. J., and Lee, C., "Pressure Oscillation and Combustion in Shear Layer of Hybrid Rocket Post Chamber," 52nd AIAA/SAE/ASEE Joint Propulsion Conference, 2016.
  6. Lilley, D. G., "Swirl Flows in Combustion: A Review," AIAA Journal, Vol. 15, No. 8, 1977, pp. 1063-1078. https://doi.org/10.2514/3.60756
  7. Iudiciani, P., "Swirl stabilized premixed flame analysis using LES and POD," PhD Thesis. Lund University, Faculty of Engineering.
  8. Yuasa, S., IDE, T., Masugi, M., Sakurai, T., Shiraishi, N., Shimada, T., "Visualization of Flames in Combustion Chamber of Swirling Oxidizer Flow Type Hybrid Rocket Engines," Journal of Thermal Science and Technology, Vol. 6, 2011, pp. 268-277. https://doi.org/10.1299/jtst.6.268
  9. Bellomo, N., Barato, F., Faenza, M., Lazzarin, M., Bettella, A. and Pavarin, D., "Numerical and Experimental Investigation of Unidirectional Vortex Injection in Hybrid Rocket Engines," Journal of Propulsion and Power, Vol. 29, No. 5, 2013, pp. 1097-1113. https://doi.org/10.2514/1.B34506
  10. Pucci, J. M., "The Effects of Swirl Injector Design on Hybrid Flame Holding Combustion Instability," 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit.
  11. Messineo, J., Lestrade, J. Y., Hijikema, J. and Anthoine, J., "3D MILES simulation of a hybrid rocket with swirl injection," Space Propulsion 2016.
  12. Choi, G. E., and Lee, C., "The Change in Flow Dynamics Inside the Post-Chamber of Hybrid Rocket," Journal of Mechanical Science and Technology, Vol. 29, No. 11, PP. 4711-4718. https://doi.org/10.1007/s12206-015-1018-9
  13. Kitagawa, K., Mitsutani, T., Ro, T., and Yuasa, S., "Effects of Swirling Liquid Oxygen Flow on Combustion of a Hybrid Rocket Engine," 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit.
  14. Potchara, W., and Greatrix, D. R., "Regression Rate Estimation for Swirling-Flow Hybrid Rocket Engines," Journal of Propulsion and Power, Vol. 32, No. 1, 2016, pp.18-22. https://doi.org/10.2514/1.B35761
  15. Greiner, B., and Frederick, R. A., "Results of Labscale Hybrid Rocket Motor Investigation," 28th AIAA/SAE/ASME/ASEE Joint Propulsion Conference and Exhibit.
  16. Culick, F. E. C., "Unsteady motions in combustion chambers for propulsion systems," AGARDograph AG-AVT-039, 2006.
  17. Choi, G. E., Moon, Y. J., and Lee, C., "Combustion Dynamics in Postchamber of Hybrid Rocket Using CH* Chemiluminescence Images," Journal of Propulsion and Power, Vol. 33, No. 1, 2017, pp. 176-186. https://doi.org/10.2514/1.B35999