• Title/Summary/Keyword: Vortex Formation and Shedding

Search Result 42, Processing Time 0.02 seconds

Lock-on states of a circular cylinder in the oscillatory flow (진동 유동장에서 원형 실린더의 lock-on 해석)

  • Kim Wontae;Sung Jaeyong;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.245-248
    • /
    • 2002
  • Vortex lock-on or resonance in the flow behind a circular cylinder is visualized by a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K{\'{a}}rm{\'{a}}n$ vortices in the wake-transition regime at the Reynolds number 360. Basically, natural shedding state is observed to compare with lock-on state. Wake motion by the change of the shedding frequency of lock-on state is investigated. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. The physical flow phenomena of natural shedding and lock-on states are analyzed with physical parameters of recirculation and vortex formation region. Consequently, it is found that the change of wake bubble plays an important role in the flow at the lock-on state. Vortex formation region is also actively changed like recirculation region as the lock-on occurs. Therefore, it is deduced that the recirculation region is closely related with the vortex formation region.

  • PDF

An Experimental Study of Vortex Formation of a Circular Cylinder with Serrated Fins (Serrated Fin Tube 후류에 대한 유동가시화 적용 및 근접후류 특성에 관한 연구)

  • Boo Jung-Sook;Kim Kyung-Chun;Ryu Byong-Nam
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.27-30
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo at al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference is occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

  • PDF

An Improvement of the Vortex Particle Method (와류입자법의 개선)

  • 박외철
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.4
    • /
    • pp.37-42
    • /
    • 1999
  • Modifications were made in the vortex particle method by reducing the number of numerical parameters and adapting more accurate integration schemes. The method was applied to 0.15, 0.2 and 0.25 rectangles where the original method yielded poor results. Structure of vortex formation and its shedding in the wake was clearly shown, and vortex shedding was more regular than that without the modifications, while the time-averaged drag coefficients were nearly the same. It was confirmed the modified method could be used in the viscous vortex particle method.

  • PDF

The Effect of Serrated Fins on the Flow Around a Circular Cylinder

  • Boo, Jung-Sook;Ryu, Byong-Nam;Kim, Kyung-Chun
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.925-934
    • /
    • 2003
  • An experimental study is performed to investigate the characteristics of near wake flow behind a circular cylinder with serrated fins using a constant temperature anemometer and flow visualization. Various vortex shedding modes are observed. Fin height and pitch are closely related to the vortex shedding frequency after a certain transient Reynolds number. The through velocity across the fins decreases with increasing fin height and decreasing fin pitch. Vortex shedding is affected strongly by the velocity distribution just on top of the finned tube. The weaker gradient of velocity distribution is shown as increasing the freestream velocity and the fin height, while decreasing the fin pitch. The weaker velocity gradient delays the entrainment flow and weakens its strength. As a result of this phenomenon, vortex shedding is decreased. The effective diameter is defined as a virtual circular cylinder diameter taking into account the volume of fins, while the hydraulic diameter is proposed to cover the effect of friction by the fin surfaces. The Strouhal number based upon the effective diameters seems to correlate well with that of a circular cylinder without fins. After a certain transient Reynolds number, the trend of the Strouhal number can be estimated by checking the ratio of effective diameter to inner diameter. The normalized velocity and turbulent intensity distributions with the hydraulic diameter exhibit the best correlation with the circular cylinder's data.

Characteristics of Near Wake Behind a Circular Cylinder with Serrated Fins (I) - Mechanism of Vortex Shedding - (톱니형 휜이 부착된 원주의 근접후류특성 연구 (I) - 와유출 메카니즘의 특성변화 규명 -)

  • Ryu, Byeong-Nam;Kim, Gyeong-Cheon;Bu, Jeong-Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.8
    • /
    • pp.1183-1190
    • /
    • 2002
  • An experimental study is performed to investigate the characteristics of near wake behind a circular cylinder with serrated fins using the constant temperature anemometer and through flow visualization. Previous report(Boo et al., 2001) shows that there are three different modes in vortex shedding behavior. This paper is focused on the identification of the physical reasons why the difference iss occured in vortex shedding. The through flow velocity crossing fins decreases as increasing fin height and decreasing fin pitch mainly due to the flow resistence. Vortex shedding is affected strongly by velocity distribution around fin tube, especially by the velocity gradient. The velocity distribution at X/d=0.0 has lower gradient with increasing freestream velocity and fin height and decreasing fin pitch. Those differences in velocity gradients generate different vortex shedding mechanism.

Study on the Unsteady Wakes Past a Square Cylinder near a Wall

  • Kim Tae Yoon;Lee Bo Sung;Lee Dong Ho
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.1169-1181
    • /
    • 2005
  • Experimental and numerical studies on the unsteady wake field behind a square cylinder near a wall were conducted to find out how the vortex shedding mechanism is correlated with gap flow. The computations were performed by solving unsteady 2-D Incompressible Reynolds Averaged Navier-Stokes equations with a newly developed ${\epsilon}-SST$ turbulence model for more accurate prediction of large separated flows. Through spectral analysis and the smoke wire flow visualization, it was discovered that velocity profiles in a gap region have strong influences on the formation of vortex shedding behind a square cylinder near a wall. From these results, Strouhal number distributions could be found, where the transition region of the Strouhal number was at $G/D=0.5{\sim}0.7$ above the critical gap height. The primary and minor shedding frequencies measured in this region were affected by the interaction between the upper and the lower separated shear layer, and minor shedding frequency was due to the separation bubble on the wall. It was also observed that the position (y/G) and the magnitude of maximum average velocity $(u/u_{\infty})$ in the gap region affect the regular vortex shedding as the gap height increases.

Lock-on Characteristics of wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 공진특성)

  • Lee Jung Yeop;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2004.11a
    • /
    • pp.18-21
    • /
    • 2004
  • Lock-on characteristics of the flow around a circular cylinder performing a rotationally oscillation with a relatively high forcing frequency have been investigated experimentally using flow visualization and hot-wire measurements. Dominant parameters are Reynolds number (Re), amplitude of oscillation $(\theta_A)$, and frequency ratio $F_R=f_f\;/\;f_n$, where $f_f$ is the forcing frequency and if is the natural frequency of vortex shedding. Experiments were carried out under the conditions of $Re=4.14\times10^3,\;\pi/15\leq\theta_A\leq\pi/3$, and $F_R=1.0$. The effects of this active control technique on the lock-on flow regime of the cylinder wake were evaluated through wake velocity measurements and spectral analysis of hot-wire signals. The rotary oscillation modified the flow structure of near wake significantly. The lock-on phenomenon was found to occur in the range of frequency encompassing the natural vortex shedding frequency. In addition, when the amplitude of oscillation is less than a certain value, the lock-on phenomenon was occurred only at $F_R=1.0$. The lock-on range expanded and vortex formation length decreased as the amplitude of oscillation increases. The rotary oscillation generated small-scale vortex structure just near the cylinder surface.

  • PDF

A Numerical Study of Formation of Unsteady Vortex behind a Sphere in Stratified Flow (층상류 속에 있는 구 후류의 비정상 와류 형성에 관한 수치 해석)

  • Lee, Seung-Su;Yang, Kyung-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.715-720
    • /
    • 2000
  • Stratified flow past a three-dimensional obstacle such as a sphere has been a long-lasting subject of geophysical, environmental and engineering fluid dynamics. In order to investigate the effect of the stratification on the near wake, in particular, the unsteady vortex formation behind a sphere, numerical simulations of stratified flows past a sphere are conducted. The time-dependent Navier-Stokes equations are solved using a three-dimensional finite element method and a modified explicit time integration scheme. Laminar flow regime is considered and linear stratification of density is assumed under Boussinesq approximation. The computed results include the characteristics of the near wake and the unsteady vortex shedding. With a strong stratification, the separation on the sphere is suppressed and the wake structure behind the sphere becomes planar, resembling that behind a vertical cylinder.

  • PDF

Effect of lock-on frequency on vortex shedding in the cylinder wake

  • Yoo Jung Yul;Sung Jaeyong;Kim Wontae
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.86-99
    • /
    • 2001
  • Vortex lock-on or resonance in the flow behind a circular cylinder is investigated from a time-resolved PIV when a single frequency oscillation is superimposed on the mean incident velocity. Measurements are made of the $K\acute{a}rm\acute{a}n$ and streamwise vortices in the wake-transition regime at the Reynolds number 360. Streamwise vortices at the lock-on and natural shedding states are observed, as well as the changes in the wake region with the change of the shedding frequency of lock-on state. When lock-on occurs, the vortex shedding frequency is found to be half the oscillation frequency as expected from previous experiments. At the lock-on state, the $K\acute{a}rm\acute{a}n$ vortices are observed to be more disordered by the increased strength and spanwise wavelength of the streamwise vortices, which leads to a strong three-dimensional motion. Recirculation and vortex formation region at the lock-on state is reduced as the oscillating frequency is increased. By comparing the Reynolds stresses at the lock-on and natural shedding states, $\bar{u'u'}\;and \;\bar{u'u'}$ at the lock-on state are concentrated on the shear layer around the cylinder. The $\bar{u'u'}\;at\;f_o/f_n=2.0$ has a large value near the centerline, compared with that of other cases. Considering the traces of maximum of u', in the wake region near the cylinder, wake width at the lock-on state is wider than that at the natural shedding state.

  • PDF

UNSTEADY AERODYNAMICS OF THE STARTING FLOW OF A PLATE OF SMALL ANGLES

  • SUNG-IK SOHN
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.27 no.4
    • /
    • pp.232-244
    • /
    • 2023
  • The unsteady dynamics of the starting flow of a flat plate is studied by using a vortex shedding model. The model describes the body and separated vortex from the trailing edge of the plate by vortex sheets, retaining a singularity at the leading edge. The model is applied to simulate the flow of an accelerated plate for small angles of attack. For numerical computations, we take two representative cases of the translational velocity of a plate: impulsive translation and uniform acceleration. The model successfully demonstrates the formation of wakes shed from the plate. The wake behind the plate is stronger for a larger angle of attack. Predictions for the lifting force from the model are in agreement with results of Navier-Stokes simulations.