Acknowledgement
This study was supported by Gangneung-Wonju National University.
References
- C. P. Ellington, C. van den Berg, A. P. Willmott, and A. L. R. Thomas, Leading-edge vortices in insect flight, Nature 384 (1996), 626-630. https://doi.org/10.1038/384626a0
- M. Nitsche and R. Krasny, A numerical study of vortex ring formation at the edge of a circular tube, J. Fluid Mech. 276 (1994), 139-161. https://doi.org/10.1017/S0022112094002508
- M. A. Jones, The separated flow of an inviscid fluid around a moving flat plate, J. Fluid Mech. 496 (2003), 405-441. https://doi.org/10.1017/S0022112003006645
- R. K. Shukla and J. D. Eldredge, An inviscid model for vortex shedding from a deforming body, Theo. Comput. Fluid Dyn. 21 (2007), 343-368. https://doi.org/10.1007/s00162-007-0053-2
- M. A. Jones and M. J. Shelley, Falling cards, J. Fluid Mech. 540 (2005), 393-425. https://doi.org/10.1017/S0022112005005859
- S. Alben, Flexible sheets falling in an inviscid fluid, Phys. Fluids 22 (2010), 061901.
- S. Alben and M. J. Shelley, Flapping states of a flag in an inviscid fluid: bistability and the transition to chaos, Phys. Rev. Lett. 100 (2008), 074301.
- Y. Huang, M. Nitsche, and E. Kanso, Hovering in oscillatory flows, J. Fluid Mech. 804 (2016), 531-549. https://doi.org/10.1017/jfm.2016.535
- F. Feng, K. L. Ho, L. Ristroph, and M. J. Shelley, A computational model of the fight dynamics and aerodynamics of a jellyfish-like fying machine, J. Fluid Mech. 819 (2017), 621-655. https://doi.org/10.1017/jfm.2017.150
- S.-I. Sohn, Inviscid vortex shedding model for the clap and fling motion of insect flights, Phys. Rev. E. 98 (2018), 033105.
- Y. Huang, L. Ristroph, M. Luhar, and E. Kanso, Bistability in the rotational motion of rigid and flexible fyers, J. Fluid Mech. 849 (2018), 1043-1067. https://doi.org/10.1017/jfm.2018.446
- S. Alben, Simulating the dynamics of flexible bodies and vortex sheets, J. Comput. Phys. 228 (2009), 2587-2603. https://doi.org/10.1016/j.jcp.2008.12.020
- S.-I. Sohn, A computational model of the swimming dynamics of a fish-like body in two dimensions, Phys. Fluids 33 (2021), 121902.
- S.-I. Sohn, An inviscid model of unsteady separated vortical flow for a moving plate, Theo. Comput. Fluid Dyn. 34 (2020), 187-213. https://doi.org/10.1007/s00162-020-00524-0
- S. Michelin and S. G. Llewellyn Smith, An unsteady point vortex method for coupled fluid-solid problems, Theo. Comput. Fluid Dyn. 23 (2009), 127-153. https://doi.org/10.1007/s00162-009-0096-7
- L. Xu, M. Nitsche, and R. Krasny, Computation of the starting vortex flow past a flat plate, Procedia IUTAM 20, 2017.
- G. Birkhoff, Helmholtz and Taylor instability, Proc. Symposia in Applied Mathematics, Vol. XIII, American Mathematical Society, Providence, 1962.
- N.I. Muskhelishvili, Singular integral equations: boundary problems of function theory and their application to mathematical physics, Wolters-Noordhoff, Groningen, Netherlands, 1958.
- R. Krasny, Desingularization of periodic vortex sheet roll-up, J. Comput. Phys. 65 (1986), 292-313. https://doi.org/10.1016/0021-9991(86)90210-X
- S.-I. Sohn, Two vortex-blob regularization models for vortex sheet motion, Phys. Fluids 26 (2014), 044105.
- C. Wang and J. D. Eldredge, Low-order phenomenological modeling of leading-edge vortex formation, Theo. Comput. Fluid Dyn. 27 (2013), 577-598. https://doi.org/10.1007/s00162-012-0279-5
- K. K. Chen, T. Colonius, and K. Taira, The leading-edge vortex and quasisteady vortex shedding on an accelerating plate, Phys. Fluids 22 (2010), 033601.