• Title/Summary/Keyword: Von Mises stress

Search Result 535, Processing Time 0.027 seconds

Computation of Beam Stress and RF Performance of a Thin Film Based Q-Band Optimized RF MEMS Switch

  • Singh, Tejinder
    • Transactions on Electrical and Electronic Materials
    • /
    • v.16 no.4
    • /
    • pp.173-178
    • /
    • 2015
  • In lieu of the excellent radio frequency (RF) performance of microelectromechanical system ( MEMS) switches, these micro switches need higher actuation voltage for their operation. This requirement is secondary to concerns over the swtiches’ reliability. This paper reports high reliability operation of RF MEMS switches with low voltage requirements. The proposed switch is optimised to perform in the Q-band, which results in actuation voltage of just 16.4 V. The mechanical stress gradient in the thin micro membrane is computed by simulating von Mises stress in a multi-physics environment that results in 90.4 MPa stress. The computed spring constant for the membrane is 3.02 N/m. The switch results in excellent RF performance with simulated isolation of above 38 dB, insertion loss of less than 0.35 dB and return loss of above 30 dB in the Q-band.

A Finite Element Analysis of Stress Distribution in the Tooth and Crown According to Design of Esthetic Crown (유한요소법을 이용한 심미치관보철의 설계에 따른 치아와 보철물의 응력분산에 관한 연구)

  • Lee, Myung-Kon;Chung, In-Sung;Kim, Ji-Hwan
    • Journal of Technologic Dentistry
    • /
    • v.21 no.1
    • /
    • pp.115-121
    • /
    • 1999
  • This investing was carried out to evaluate the alteration of stress distribution on teeth and esthetic crowns. Analyzing the stress distribution by the two-dimensional finite element methods, a model of lower 1st molar according to the porcelain fused metal crown an the porcelain fused glass ceramic core crown and the all glass ceramic crown. 1. The pattern of stress distribution showed no apparent differences. 2. The greatest von Mises values were concentrated around the central fossa of all esthetic crowns. The greatest Maximum principle value were concentrated around the interface between the base of esthetic crown and the abutment tooth. It was found that the apatite glass ceramic could be applicable for use in dental crown prosthesis.

  • PDF

A finite element yield line model for the analysis of reinforced concrete plates

  • Rasmussen, L.J.;Baker, G.
    • Structural Engineering and Mechanics
    • /
    • v.6 no.4
    • /
    • pp.395-409
    • /
    • 1998
  • This paper concerns the development and implementation of an orthotropic, stress resultant elasto-plastic finite element model for the collapse load analysis of reinforced concrete plates. The model implements yield line plasticity theory for reinforced concrete. The behaviour of the yield functions are studied, and modifications introduced to ensure a robust finite element model of cases involving bending and twisting stress resultants ($M_x$, $M_y$, $M_{xy}$). Onset of plasticity is always governed by the general yield-line-model (YLM), but in some cases a switch to the stress resultant form of the von Mises function is used to ensure the proper evolution of plastic strains. Case studies are presented, involving isotropic and orthotropic plates, to assess the behaviour of the yield line approach. The YLM function is shown to perform extremely well, in predicting both the collapse loads and failure mechanisms.

Effect of cavity-defects interaction on the mechanical behavior of the bone cement

  • Zouambi, Leila;Serier, Boualem;Benamara, Nabil
    • Advances in materials Research
    • /
    • v.3 no.1
    • /
    • pp.271-281
    • /
    • 2014
  • The presence of cavities in the bone cement has a great importance for the transport of antibiotics, but its existence in this material can lead to its weakening by notch effect. The aim of this study allows providing a physical interpretation to the cavities interconnection by cracks observed experimentally. The most important stress of Von Mises is localized at the cement/bone interface near the free edge which is the seat of stress concentration. The presence and interaction of cavities in this site concentrate, by notch effect, stresses which tend to the tensile fracture stress of Bone cement.

An Aanalytical Study of Structural Performance Evaluation for Multi-stage Control Movable Weir (다단제어 가동보의 구조성능 평가를 위한 해석적 연구)

  • Lee, Haesoo;Park, Taehyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.5
    • /
    • pp.61-68
    • /
    • 2021
  • Movable weirs with multi-stage control are necessary in many Korean rivers to actively control the water storage level. A mesh dependency test was performed to determine the appropriate number of meshes for structural analysis of movable weirs. The standing angles of movable weirs were set to 60°, 45°, 30°, and 15° for stress analysis. The standing angle of 0° was excluded from the analysis because it was unloaded. Changes in the standing angle led to changes in the water depth, maximum pressure, maximum strain, and maximum stress. The maximum average stress and the structural safety of the multi-stage control movable weir were computed and tested using the Ansys FEA software package.

A Study of Spring-back Effect According to the Number of Roll Passes in the Roll Forming Process (롤 포밍 공정에서의 롤 패스의 수에 따른 스프링 백 영향 연구)

  • Kim, Dong-Hong;Zhang, Ya;Jung, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.1
    • /
    • pp.42-49
    • /
    • 2016
  • This study was analyed V-bending in order to analyze the spring-back phenomenon in the roll forming process. The material of forming sheet used in the roll forming process is high tension steel and the product name of sheet material is POSTEN 60. The most important variable is the number of roll passes (3-Pass, 4-Pass, 5-Pass, 6-Pass and 10-Pass) and other roll forming process variables were fixed. To determine the characteristics of the tension and compression, the forming sheet was analyzed by dividing the layer (Upper and Bottom) in the thickness direction from the center line. The results of FEM simulation analysis was derived to von-mises stress equivalent strain, and the spring-back value was calculated according to the final forming shape. The more number of the roll pass, von-mises stress and equivalent strain value of forming sheet were lowed. Also, spring-back values tended to decrease. The results of this study can be utilized for prediction and trend of spring-back value in the roll forming process applied to high tension steel sheet. So, development time and cost of the roll forming process is expected to be reduced.

A Study on Structural Safety and Advanced Efficiency for a Drywell Type Reducer (누유방지형 감속기의 구조적 안전성 및 토크효율 향상에 관한 연구)

  • Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.11
    • /
    • pp.1399-1406
    • /
    • 2011
  • The reducer of the mixer is one of the main parts of the processor used for water and wastewater treatment. In this study, an advanced reducer with a drywell structure was developed in order to prevent oil leakage during operation in the field. During the development of the advanced reducer prototype, a mockup, a metal mold, and a cast were made using CAD and a CNC machine. The structural safety of the reducer prototype's lower housing (drywell structure) was checked using the ALGOR commercial FEM analysis code, which yielded a von Mises stress of about 123 N/mm2, which is below the yield stress of 250 N/$mm^2$, and a natural frequency of about 650-700 Hz. In addition, the torque transmission efficiency for the advanced prototype was 95.87%, which is about 8% more than that found in a previous study, 88.45%, and the sound level was below 75 dB. Furthermore, no oil leakage or abnormal sound or vibration occurred. Therefore, an optimally designed advanced reducer prototype has been successfully developed.

The Effects of Affecting Ratios on the Strength Safety of a Composite Fuel Tank for FEV Vehicles (FEV 자동차용 복합소재 연료탱크의 강도안전성에 미치는 기여율에 관한 해석적 연구)

  • Kim, Chung-Kyun;Kim, Do-Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.35-39
    • /
    • 2011
  • The purpose of this paper is to analyze affecting ratios of strength safety in carbon fiber layer thickness of a composite fuel tank for FEV vehicles. To investigate affecting ratios by FEM modeling, the equivalent von Mises stress has been computed on the aluminum liner and carbon fiber layers of composite fuel tanks in hoop and helical directions respectively. According to the FEM results, the affecting ratios of an aluminum liner on the equivalent stress are 77.5% in hoop direction, 18.11% in $70^{\circ}C$ winded helical direction and 4.39% in $12^{\circ}C$ winded helical direction. These trends on the strength safety of carbon fiber layers have been shown as those of an aluminum liner even though the layer thickness ratio of $12^{\circ}C$ inclined carbon fiber is very high of 42% compared with that of hoop layer thickness. Thus, the computed results show that the strength safety of a carbon fiber fuel tank is more influenced by the winding angle rather than the fiber thickness of carbon fiber layers.

Biomimetics of Nano-pillar (나노섬모의 자연모사 기술)

  • Hur, Shin;Choi, Hong-Soo;Lee, Kyu-Hang;Kim, Wan-Doo
    • Elastomers and Composites
    • /
    • v.44 no.2
    • /
    • pp.98-105
    • /
    • 2009
  • The cochlea of the inner ear has two core components, basilar membrane and hair cells. The basilar membrane disperses incoming sound waves by their frequencies. The hair cells are on the basilar membrane, and they are the sensory receptors generating bioelectric signals. In this paper, a biomimetic technology using ZnO piezoelectric nano-pillar was studied as the part of developing process for artificial cochlea and novel artificial mechanosensory system mimicking human auditory senses. In particular, ZnO piezoelectric nano-pillar was fabricated by both low and high temperature growth methods. ZnO piezoelectric nano-pillars were grown on solid (high temperature growth) and flexible (low temperature growth) substrates. The substrates were patterned prior to ZnO nano-pillar growth so that we can selectively grow ZnO nano-pillar on the substrates. A multi-physical simulation was also conducted to understand the behavior of ZnO nano-pillar. The simulation results show electric potential, von Mises stress, and deformation in the ZnO nano-pillar. Both the experimental and computational works help characterize and optimize ZnO nano-pillar.

Sensitivity analysis of shoulder joint muscles by using the FEM model

  • Metan, Shriniwas.S.;Mohankumar, G.C.;Krishna, Prasad
    • Biomaterials and Biomechanics in Bioengineering
    • /
    • v.3 no.2
    • /
    • pp.115-127
    • /
    • 2016
  • Shoulder pain, injury and discomfort are public health and economic issues world-wide. The function of these joints and the stresses developed during their movement is a major concern to the orthopedic surgeon to study precisely the injury mechanisms and thereby analyze the post-operative progress of the injury. Shoulder is one of the most critical joints in the human anatomy with maximum degrees of freedom. It mainly consists of the clavicle, scapula and humerus; the articulations linking them; and the muscles that move them. In order to understand the behavior of individual muscle during abduction arm movement, an attempt has been made to analyze the stresses developed in the shoulder muscles during abduction arm movement during the full range of motion by using the 3D FEM model. 3D scanning (ATOS III scanner) is used for the 3D shoulder joint cad model generation in CATIA V5. Muscles are added and then exported to the ANSYS APDL solver for stress analysis. Sensitivity Analysis is done for stress and strain behavior amongst different shoulder muscles; deltoid, supraspinatus, teres minor, infraspinatus, and subscapularies during adduction arm movement. During the individual deltoid muscle analysis, the von Mises stresses induced in deltoid muscle was maximum (4.2175 MPa) and in group muscle analysis it was (2.4127MPa) compared to other individual four rotor cuff muscles. The study confirmed that deltoid muscle is more sensitive muscle for the abduction arm movement during individual and group muscle analysis. The present work provides in depth information to the researchers and orthopedicians for the better understanding about the shoulder mechanism and the most stressed muscle during the abduction arm movement at different ROM. So during rehabilitation, the orthopedicians should focus on strengthening the deltoid muscles at earliest.