• Title/Summary/Keyword: Volumetric Ratio

Search Result 383, Processing Time 0.021 seconds

Evaluation of R/C Short Columns Strength by Concrete Compressive Strength and Transverse Reinforcement Ratios (콘크리트 압축강도와 띠철근의 체적비에 따른 R/C 단주의 내력평가)

  • 김경회;김재환;한범석;반병열;이광수;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.505-508
    • /
    • 1999
  • To evaluate the strength of square reinforced concrete shot columns, thirty specimens were manufactured and tested under monotonically increasing concentric compression. The test parameters included the volumetric ratio of transverse reinforcement($\rho$h = 0.49~2.65), and concrete compressive strength (234, 437, 704 kgf/$\textrm{cm}^2$). Test results are shown that : (1) Behavior of high -strength concrete column is improved by providing increased volumetric ratio; and (2) ACI, Eq. is not proper to evaluate HSC short column strength.

  • PDF

Axial strain - Volumetric strain Relationship of Light-Weighted Foam Soil (경량기포혼합토의 축변형율 - 체적변형율 관계)

  • 김주철;김병탁;윤길림;서인식
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.853-860
    • /
    • 2003
  • Relationship between axial strain and volumetric strain of Light-Weighted Foam Soil (LWFS) are investigated. LWFS is composed of the dredged soil from offshore, cement and foam to reduce the unit weight and also increase compressive strength. For this purpose. the triaxial compression tests are carried out on the prepared specimens of LWFS with various conditions such as initial water contents, cement contents, and curing stresses, The test results of LWFS Indicated that the axial strain - volumetric strain relationship is almost linearity with increase cement contents and the unit weight but the relationship is non-linearity with decrease cement contents and the unit weight. In this study, it is found that assuming no change of cross section area of LWFS, axial strain occurring the poisson's ratio of zero, that the axial strain same to volumetric strain, steeply increases with decrease the unit weight, initial water content, and cement contents.

  • PDF

A CFD ANALYSIS ON THE INFLUENCE OF OPERATING CONDITIONS AND EJECTOR CONFIGURATION ON THE HYDRODYNAMICS AND MASS TRANSFER CHARACTERISTICS OF GAS-LIQUID EJECTOR

  • Utomo, Tony;Jin, Zen-Hua;Yi, Chung-Seub;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2817-2822
    • /
    • 2007
  • The purpose of this paper is to study the influence of operating condition and ejector geometries on the hydrodynamics and on the mass transfer characteristic of ejector. The CFD results were validated with available experimental data. Flow field analyses and predictions of ejector performance were also carried out. Variation on the operating conditions was made by varying the gas-liquid flow rate ratio in the range of 0.2 to 1.2. The ejector configuration was also varied on the length to diameter ratio of mixing tube ($L_M/D_M$) in the range of 4 to 10. CFD studies show that at $L_M/D_M$ 5.5, the volumetric mass transfer coefficient increases with respect to gas flow rates. Meanwhile, at $L_M/D_M$ 4, the plot of volumetric mass transfer coefficient to gas-liquid flow rates ratio reach maximum at gas-liquid flow rates ratio of 0.6. This study also shows that volumetric mass transfer coefficient decrease with respect to the increase of mixing tube length.

  • PDF

Mass Transfer Characteristics of Vertical Two-Phase Flows with Orifice Nozzle (오리피스 노즐 수직 2 상 유동의 물질전달 특성)

  • Kim, Dong Jun;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.10
    • /
    • pp.817-824
    • /
    • 2015
  • Experiments were carried out to investigate the flow and mass transfer characteristics of an orifice nozzle. Measurements of primary and suction flow rates, dissolved oxygen concentration, and electric power were obtained. Vertically injected mixed-jet images were captured by a direct visualization technique with a high speed camera unit. The mass ratio, volumetric mass transfer coefficient, and mass transfer performance were calculated using the measured data. As the primary flow pressure increases, the mass ratio decreases slightly, while the volumetric mass transfer coefficient and electric power increase. As the primary flow pressure increases and the mass ratio decreases, the mass transfer rate increases because of the fine bubbles and wider distribution of the bubbles.

Effect of Boss Wall Thickness on Sink Mark in Injection Molding (보스 벽 두께가 사출성형의 싱크마크 발생에 미치는 영향)

  • Kim, H.P.;Kim, Y.J.
    • Design & Manufacturing
    • /
    • v.6 no.1
    • /
    • pp.5-11
    • /
    • 2012
  • The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the boss wall thickness. The volumetric shrinkage is caused by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase the flow rate to a boss part and causes the depth of sink mark to increase. As the molding thickness and the boss wall thickness in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink mark that was generated in the boss wall thickness of injection molded products. The sink mark could also be caused by thickness ratio of boss part. For a given thickness ratio of boss, several molding process parameters such as packing pressure, packing time and melt temperature, affecting to generation of the sink mark were discussed.

  • PDF

Influence of gradation on shear strength and volume change behavior of silty sands

  • Monkul, Mehmet Murat
    • Geomechanics and Engineering
    • /
    • v.5 no.5
    • /
    • pp.401-417
    • /
    • 2013
  • The results of an experimental program regarding the effects of gradation on shear strength and volume change behavior of silty sands are presented. Consolidated drained direct shear tests were performed on two clean base sands and twelve silty sands obtained by mixing those base sands with two different non-plastic silts at various fines contents (${\leq}$ 25%). Drained shear strengths were observed to be not significantly influenced by either base sand gradation or silt gradation or fines content for the studied range. Increasing fines content has increased the volumetric contraction of specimens at similar void ratio. However, the amount of increase in volumetric contraction of silty sands were found to be affected by silt gradation when other influencing factors such as fines content, base sand gradation and mineralogy were kept the same. Moreover, the amount of increase in volumetric contraction of silty sands were also found to be affected by base sand gradation when other influencing factors such as fines content, silt gradation and mineralogy were kept the same.

THE CHARACTERISTIC OF A TWO STAGE AMMONIA RECIPROCATING COMPRESSOR (왕복동 압축기의 성능에 대하여)

  • CHO Kweoun Ock;OH Hoo Kyu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.10 no.1
    • /
    • pp.65-69
    • /
    • 1977
  • The characteristics of two stage compressor which is constituted of two separated reciprocating compressors was tested measuring the volumetric efficiency of each compressor at suction of both bighandlowpressdresideusillgorificetypeflolrmeters. The volumetric efficiency of low pressure side compressor was lower than that of the high side when they were operating under the same compression ratio. And it tended to reduce obviously by lowering evaporating temperature resulting in a markable reduction of refrigerating capacity at the same time. It is assumed that the falling of volumetric efficiency at low side compressor was directed by the decrease in evaporating temperature which derives the falls of gas pressure at suction, increase in compression ratio, and gas flow resistance at suction and discharge valves.

  • PDF

Effect of Boss Wall Thickness on Sink Mark in Injection Molding (보스 벽 두께가 사출성형의 싱크마크 발생에 미치는 영향)

  • Kim, Hyun-Pil;Kim, Yohng-Jo
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.103-109
    • /
    • 2008
  • The sink mark on boss parts is generated by the volumetric shrinkage that is caused by both the molding thickness and the boss wall thickness. The volumetric shrinkage is caused by packing pressure and its amount tends to decrease by increasing the packing pressure. The packing pressure can therefore increase the flow rate to a boss part and causes the depth of sink mark to increase. As the molding thickness and the boss wall thickness in the boss part can increase the part volume, these may yield bad solidifying and also extend the molding cycle. In this paper, both the injection molding test and the flow analysis were carried out to investigate the effect of sink mark that was generated in the boss wall thickness of injection molded products. The sink mark could also be caused by thickness ratio of boss part. For a given thickness ratio of boss, several molding process parameters such as packing pressure, packing time and melt temperature, affecting to generation of the sink mark were discussed

  • PDF

The Volumetric Ratio of Transverse Reinforcement of R/C Columns Considering Effective Lateral Confining Reduction Factor (유효횡구속압력 감소계수를 사용한 RC 기둥의 횡보강근량 평가)

  • Kim, Jong-Keun;Ahn, Jong-Mun;Shin, Sung-Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.3
    • /
    • pp.311-318
    • /
    • 2009
  • An experimental investigation was conducted to examine the hysteretic behaviors of ultra-high strength concrete tied columns. The purpose of this study is to propose the volumetric ratio of transverse reinforcement for ultra-high strength concrete tied columns with 100 MPa compressive strength. Nineteen 1/3 scaled columns were fabricated to simulate an 1/2 story of actual structural members with the main variables of axial load ratio, configurations and volumetric ratios of transverse reinforcement. The results show that the deformability of columns are affected by the configurations and volumetric ratios of transverse reinforcement. Especially, it has been found that the behavior of columns are affected by axial load ratio rather than the amounts and the configurations of transverse reinforcement. To improve the ductility behavior of RC column using ultra high strength concrete in a seismic region, We suggested the amount of transverse reinforcement for all data that satisfy the required displacement ductility ratio over 4. It is means that the lateral confining reduction factor (${\lambda}^c$) considering the effective legs, configuration and spacing of transverse reinforcement and axial load ratio was reflected for the volumetric ratio of transverse reinforcement.

Prediction of the Volumetric Water Content Using the Soil-Water Characteristic Curve on an Unsaturated Soil (흙-수분 특성곡선 방정식을 이용한 체적함수비의 예측)

  • Song, Chang-Seob
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.6
    • /
    • pp.39-48
    • /
    • 2004
  • The purpose of this paper was to confirm the application of the equation of the soil-water characteristic curve on an unsaturated soil. To this ends, a series of suction test was conducted on the selected 4 kinds of soil which is located in Korea, using the modified pressure extractor apparatus. And it was carried out to analyze the experimental parameters which can describe the soil-water characteristics, were determined by using the data obtained from the experiment. From the results, it was found that the matric suction was varied according to the grain size distribution, amount of fine grain particle and void ratio. Also it was found that the residual volumetric water content was decreased with the void ratio, but the index related air entry value, the soil parameter related water content and the parameter with residual water content were increased with the void ratio. And the application of equation of the soil-water characteristic curve was confirmed for the various conditions and the various state by the comparison between the volumetric water content measured by the experiment and the predicted values.