DOI QR코드

DOI QR Code

Influence of gradation on shear strength and volume change behavior of silty sands

  • Received : 2013.02.13
  • Accepted : 2013.05.08
  • Published : 2013.10.25

Abstract

The results of an experimental program regarding the effects of gradation on shear strength and volume change behavior of silty sands are presented. Consolidated drained direct shear tests were performed on two clean base sands and twelve silty sands obtained by mixing those base sands with two different non-plastic silts at various fines contents (${\leq}$ 25%). Drained shear strengths were observed to be not significantly influenced by either base sand gradation or silt gradation or fines content for the studied range. Increasing fines content has increased the volumetric contraction of specimens at similar void ratio. However, the amount of increase in volumetric contraction of silty sands were found to be affected by silt gradation when other influencing factors such as fines content, base sand gradation and mineralogy were kept the same. Moreover, the amount of increase in volumetric contraction of silty sands were also found to be affected by base sand gradation when other influencing factors such as fines content, silt gradation and mineralogy were kept the same.

Keywords

Acknowledgement

Supported by : FP7

References

  1. ASTM (2005), Annual Book of ASTM Standards, American Society for Testing and Materials, Vol. 04.08, Philadelphia, USA.
  2. Bareither, C.A., Edil, T.B., Benson, C.H. and Mickelson, D.M. (2008), "Geological and physical factors affecting the friction angle of compacted sands", J. Geotech. Geoenviron. Eng. ASCE, 134(10), 1476-1489. https://doi.org/10.1061/(ASCE)1090-0241(2008)134:10(1476)
  3. Bobei, D.C., Lo, S.R., Wanatowski, D., Gnanendran, C.T. and Rahman, M.M. (2009), "Modified state parameter for characterizing static liquefaction of sand with fines", Can. Geotech. J., 46(3), 281-295. https://doi.org/10.1139/T08-122
  4. Carraro, J.A.H., Prezzi, M. and Salgado, R. (2009), "Shear strength and stiffness of sands containing plastic or nonplastic fines", J. Geotech. Geoenviron. Eng. ASCE, 135(9), 1167-1178. https://doi.org/10.1061/(ASCE)1090-0241(2009)135:9(1167)
  5. Fannin, R.J., Eliadorani, A. and Wilkinson, J.M.T. (2005), "Shear strength of cohesionless soils at low stress", Geotech., 55(6), 467-468. https://doi.org/10.1680/geot.2005.55.6.467
  6. Hideo, H., Takao, K., Takeshi, F. and Hideyuki, A. (1994), "Case study of the application of direct shear and cone penetration tests to soil investigation, design and quality control for peaty soils", Soil. Found., 34(4), 13-22.
  7. Iai, M. and Luna, R. (2011), "Direct shear tests on JSC-1A lunar regolith stimulant", J. Aerosp. Eng. ASCE, 24(4), 433-441. https://doi.org/10.1061/(ASCE)AS.1943-5525.0000082
  8. Igwe, O., Fukuoka, H. and Sassa, K. (2012), "The effect of relative density and confining stress on shear properties of sands with varying grading", Geotech. Geol. Eng., 30(5), 1207-1229. https://doi.org/10.1007/s10706-012-9533-2
  9. Igwe, O., Sassa, K. and Wang, F. (2007), "The influence of grading on the shear strength of loose sands in stress-controlled ring shear tests", Landslides, 4(1), 43-51. https://doi.org/10.1007/s10346-006-0051-2
  10. Koerner, R.M. (1970), "Effect of particle characteristics on soil strength", J. Soil Mech. Found. Div. ASCE, 96(SM4), 1221-1234.
  11. Kokusho, T., Hara, T. and Hiraoka, R. (2004), "Undrained shear strength of granular soils with different particle gradations", J. Geotech. Geoenviron. Eng. ASCE, 130(6), 621-629. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:6(621)
  12. Kuerbis, R., Negussey, D. and Vaid, Y.P. (1988), "Effect of gradation and fines content on the undrained response of sand", Hydraulic Fill Structures, ASCE Geotech. Eng. Div. Specialty Publication No. 21, (D.J.A. Van Zyl and S.G. Vick, Eds.), Fort Collins, Colorado, 330-345.
  13. Kumar, R., Kanaujia, V.K. and Chandra, D. (1999), "Engineering behaviour of fibre-reinforced pond ash and silty sand", Geosynth. Int., 6(6), 509-518. https://doi.org/10.1680/gein.6.0162
  14. Lade, P.V. and Yamamuro, J.A. (1997), "Effects of non-plastic fines on static liquefaction of sands", Can. Geotech. J., 34(6), 918-928. https://doi.org/10.1139/t97-052
  15. Lade, P.V., Liggio, C.D. Jr. and Yamamuro, J.A. (1998), "Effects of non-plastic fines on minimum and maximum void ratios of sand", Geotech. Test. J. ASTM, 21(4), 336-347. https://doi.org/10.1520/GTJ11373J
  16. Lambe, T.W. and Whitman, R.V. (1969), Soil Mechanics, Wiley, New York, pp. 553.
  17. Mesri, G. and Huvaj-Sarihan, N. (2012), "Residual shear strength measured by laboratory tests and mobilized in landslides", J. Geotech. Geoenviron. Eng. ASCE, 138(5), 585-593. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000624
  18. Monkul, M.M. and Ozden, G. (2007), "Compressional behavior of clayey sand and transition fines content", Eng. Geol., 89(3-4), 195-205. https://doi.org/10.1016/j.enggeo.2006.10.001
  19. Monkul, M.M. and Yamamuro, J.A. (2010), "Influence of densification method on some aspects of undrained silty sand behavior", Proceedings of the Fifth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, San Diego, California, Paper No: 1.23a (CD-ROM). ISBN: 1-887009-15-9.
  20. Monkul, M.M. and Yamamuro, J.A. (2011), "Influence of silt size and content on liquefaction behavior of sands", Can. Geotech. J., 48(6), 931-942. https://doi.org/10.1139/t11-001
  21. Monkul, M.M., Yamamuro, J.A. and Lade, P.V. (2011), "Failure, instability, and the second work increment in loose silty sand", Can. Geotech. J., 48(6), 943-955. https://doi.org/10.1139/t11-013
  22. Murthy, T.G., Loukidis, D., Carraro, J.A.H., Prezzi, M. and Salgado, R. (2007), "Undrained monotonic response of clean and silty sands", Geotech., 57(3), 273-288. https://doi.org/10.1680/geot.2007.57.3.273
  23. Pitman, T.D., Robertson, P.K. and Sego, D.C. (1994), "Influence of fines on the collapse of loose sands", Can. Geotech. J., 31(5), 728-739. https://doi.org/10.1139/t94-084
  24. Rahman, M.M., Lo, S.R. and Gnanendran, C.T. (2008), "On equivalent granular void ratio and steady state behaviour of loose sand with fines", Can. Geotech. J., 45(10), 1439-1456. https://doi.org/10.1139/T08-064
  25. Skopek, P., Morgenstern, N.R., Robertson, P.K. and Sego, D.C. (1994), "Collapse of dry sand", Can. Geotech. J., 31(6), 1008-1014. https://doi.org/10.1139/t94-115
  26. Thevanayagam, S. (1998), "Effect of fines on confining stress on undrained shear strength of silty sands", J. Geotech. Geoenviron. Eng. ASCE, 124(6), 479-491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)
  27. Thevanayagam, S., Shenthan, T., Mohan, S. and Liang, J. (2002), "Undrained fragility of clean sands, silty sands, and sandy silts", J. Geotech. Geoenviron. Eng. ASCE, 128(10), 849-859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)
  28. Vaid, Y.P., Fisher, J.M., Kuerbis, R.H. and Negussey, D. (1990), "Particle gradation and liquefaction", J. Geotech. Eng. ASCE, 116(4), 698-703. https://doi.org/10.1061/(ASCE)0733-9410(1990)116:4(698)
  29. Vallejo, L.E. (2001), "Interpretation of the limits in shear strength in binary granular mixtures", Can. Geotech. J., 38(5), 1097-1104. https://doi.org/10.1139/t01-029
  30. Vallejo, L.E. and Mawby, R. (2000), "Porosity influence on the shear strength of granular material-clay mixtures", Eng. Geol., 58(2), 125-136. https://doi.org/10.1016/S0013-7952(00)00051-X
  31. Yamamuro, J.A. and Covert, K.M. (2001), "Monotonic and Cyclic Liquefaction of very loose sands with high silt content", J. Geotech. Geoenviron. Eng. ASCE, 127(4), 314-324. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314)
  32. Yamamuro, J.A. and Lade, P.V. (1997), "Static liquefaction of very loose sands", Can. Geotech. J., 34(6), 905-917. https://doi.org/10.1139/t97-057
  33. Yamamuro, J.A. and Wood, F.M. (2004), "Effect of depositional method on the undrained behavior and microstructure of sand with silt", Soil Dyn. Earthq. Eng., 24(9-10), 751-760. https://doi.org/10.1016/j.soildyn.2004.06.004

Cited by

  1. Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation vol.9, pp.5, 2015, https://doi.org/10.12989/gae.2015.9.5.619
  2. Influence of coefficient of uniformity and base sand gradation on static liquefaction of loose sands with silt vol.89, 2016, https://doi.org/10.1016/j.soildyn.2016.08.001
  3. Estimation of liquefaction potential from dry and saturated sandy soils under drained constant volume cyclic simple shear loading vol.75, 2015, https://doi.org/10.1016/j.soildyn.2015.03.019
  4. Effect of grain size distribution on stress-strain behavior of lunar soil simulants vol.60, pp.3, 2017, https://doi.org/10.1016/j.asr.2017.04.029
  5. A Laboratory Study on Estimation of Shear Strength and Compaction Properties of Overburden Dump Material in Indian Coal Mines vol.92, pp.3, 2018, https://doi.org/10.1007/s12594-018-1021-8
  6. Experimental study on crushable coarse granular materials during monotonic simple shear tests vol.15, pp.1, 2013, https://doi.org/10.12989/gae.2018.15.1.687
  7. A numerical analysis of the equivalent skeleton void ratio for silty sand vol.17, pp.1, 2019, https://doi.org/10.12989/gae.2019.17.1.019
  8. Packing Density and Overconsolidation Ratio Effects on the Mechanical Response of Granular Soils vol.38, pp.1, 2020, https://doi.org/10.1007/s10706-019-01061-2
  9. Using grain size to predict engineering properties of natural sands in Pakistan vol.22, pp.2, 2013, https://doi.org/10.12989/gae.2020.22.2.165
  10. Liquefaction Resistance of Silty Sand with Ground Rubber Additive vol.21, pp.6, 2013, https://doi.org/10.1061/(asce)gm.1943-5622.0002002