• Title/Summary/Keyword: Volume size

Search Result 3,218, Processing Time 0.027 seconds

Morphological Effect of Dispersed Phase on Gas Separation Properties through Heterophase Polymer Membrane: Theoretical and Experimental Approaches.

  • Park, Cheolmin;Jo, Won-Ho;Kang, Yong-Soo
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1996.04a
    • /
    • pp.55-56
    • /
    • 1996
  • Heterophase polymer system has been attractive for a potential applicability to gas separation membrane material. It has been known that there is a trade-off between gas permeability and its selectivity in common polymers. Therefore, the heterophase polymer can be an alternative for a gas separation membrane material because its transport properties can be readily controlled by blending of two different polymers. The transport properties of immiscible polymer blends strongly depend upon the intrinsic transport properties of corresponding polymers. Another important factor to determine the transport properties is their morphology: volume fraction, size and shape of dispersed phase. Although the effect of the volume fraction of the dispersed phase on the transport properties has been widely investigated, the size and shape effects have been paid attention very much. In an immiscible polymer blend of two polymers, its morphology is primarily controlled by its volume fraction of dispersed phase. Therefore, the effect of the size of the dispersed phase can be hardly seen. Therefore, a block copolymer has been commonly employed to control their morphology when each block is miscible with one or the other phase. In this work, gas transport properties will be measured by varying the morphology of the heterophase polymer membrane. The transport properties will be interpreted in terms of their morphology. The effect of the volume fraction of the PI phase and, in particular, its size effect will be investigated experimentally and theoretically.

  • PDF

A study on the breast type and sizing system for 20's and 40's women's brassire

  • 박은미;손희순
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.249-267
    • /
    • 1995
  • The purpose of this study is to analyze breast shape by age, to classify breast types and then to suggest brassiere size chart. The subject of anthropometric measurement were 232 women in 20's and 40's. The direct anthropmetric measurement were analyzed by mean, standard deviation, duncan test, T-test, ANOVA, factor & cluster analysis The results are as follows; 1) as a result of analysis for the measurements, according to the increase of age, the items of height were decreased and the items of width, depth, cir- cumference, length were increased, being obesity and breast points were dropped. So the volume and bottom area of 40's women's breast were lager than 20's women's. The width of breast points was bide by increasing of intereior. 2) as a result of factor analyxis, 5 factors were extracted as important factor of breast shapes(obesity of breast and location of breast point, breast height and volume, upper dimensions of breast/lower dimensions of breast, interior dimensions of breast/exterior dimensions of breast, volume of the lower part and drop of breast) 3) as a reslut of cluster analysis, the breast shape were classified into 4 types. namely, typel has the smallest volume, bottom area of breast and the slenderest breast, type2 was the second obesity type. type3 was middle sized type. type4 has much dropped, wide bottom area of breast and the biggest form. 4) To establish brassiere sizing system, the loss funtion was used to decide interval of under bust girth and cup size of size chart. 20 brassiere sizes were established and the size chart covers 92.2% of all subject.

  • PDF

Forward Converter Using 300W Planar Transformer (300W 평면 변압기적용 포워드 컨버터)

  • Choi, S.H;Park J.Y;Kim E.S
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.560-567
    • /
    • 2004
  • In this paper, the design and implementation of a high power(300W) forward converter using a planar transformer is presented. The overall size and volume of the converter is decreased by replacing a planar transformer in stead of using a conventional winding transformer. Due to the decreased size and volume, power density of the applied forward converter is increased. Also, in this paper, the 300W ZVS forward converter with active clamp snubber circuit is compared to the 300W hard switching forward converter planar transformer, the decreased size and volume, the 300W ZVS forward converter with active clamp snubber circuit, 30W hard switching forward converter.

Study on Bubble Generation and Size by Dimensionally Stable Anode in Electroflotation Process (전기부상공정에서 촉매성 산화물 전극에 따른 기포 발생량과 크기에 관한 연구)

  • Kim, Dong-Seog;Park, Young-Seek
    • Journal of Environmental Science International
    • /
    • v.16 no.10
    • /
    • pp.1189-1195
    • /
    • 2007
  • Small gas bubbles are used in many environmental and industrial processes for solid-liquid separations or to facilitate heat and mass transfer between phases. This study examines some of the factors that affect the bubble volume and size processed in the EF (electroflotation) process. The effect of electrode material, NaCl dosage, current and electrode distance were studied. The results showed that the generated bubble volume with electrode material lay in: Pt/Ti ${\fallingdotseq}$ Ru/Ti ${\fallingdotseq}$ Ir/Ti > Ti electrode. The more NaCl dosage was high, the smaller bubble was generated due to the low electric power. Bubble generation was increased with increase of current. With the increase of NaCl dosage, bubble generation was increased at same electric power (16.2 W). Generated bubble volume was not affected by electrode distance. However, no clear trends in bubble size as a function of these parameters were evident.

Properties of Bubble used in Concrete ac cording to Change in Manufacturing Condition

  • Byoungil Kim
    • Architectural research
    • /
    • v.26 no.1
    • /
    • pp.13-20
    • /
    • 2024
  • This study is a research investigation into the properties of bubbles that affect the characteristics of foamed concrete during its production. The study examined the properties of bubbles based on the manufacturing conditions. To investigate these properties, the selected experimental factors included bead size, the length/diameter ratio of the bubble-generating tube, and compressed air. The experimental design used a design of experiments, and the test results were analyzed using analysis of variance. The foaming agent used to generate bubbles was AES (Alcohol Ethoxy Sulfate), and the method employed for bubble manufacture was the pre-foaming method. In the test results, a significant factor affecting the foaming rate of bubbles was the bead size; the highest foaming rate was observed when using 2mm beads. Bead size also primarily influenced the volume change of the aqueous solution, while other factors did not affect the foaming rate and volume change. None of the factors affected the change in bubble size, but compressed air was considered the main factor affecting bubble size and its change. The foaming rate and volume change of the aqueous solution showed a high correlation with each other. Spherical bubbles in the early stage eventually transformed into angular bubbles. Moreover, over time, it was observed that the bubble size increased.

Ground Organic Monolith Particles Having a Large Volume of Macropores as Chromatographic Separation Media

  • Lee, Jin Wook;Ali, Faiz;Kim, Yune Sung;Cheong, Won Jo
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.2033-2037
    • /
    • 2014
  • A reaction mixture was developed for formation of soft organic monolith that was easily smashed, rinsed, refluxed, filtered, and dried to give monolith particles having high pore volume of macropores. This phase was almost without mesopores. The reaction mixture was composed of methacrylic acid, ethylene glycol dimethacrylate, polyethylene glycol (porogen), and an initiator in a mixed solvent of toluene and isooctane. The selection of porogen and its amount was carefully carried out to obtain the optimized separation efficiency of the resultant phase. The median macropore size was 1.6 ${\mu}m$, and the total pore volume was 3.0-3.4 mL/g. The median particle size (volume based) was 15 ${\mu}m$, and the range of particle size distribution was very broad. Nevertheless the column (1 ${\times}$ 300 mm) packed with this phase showed good separation efficiency (N~10,000-16,000) comparable to that of a commercial column packed with 5 ${\mu}m$ C18 silica particles.

Exchange Coupling in Massively Produced Nd2Fe14B+Fe3B Nanocomposite Powders

  • Yang, Choong Jin;Park, Eon Byung;Han, Jong Soo;Kim, Eung Chan
    • Journal of Magnetics
    • /
    • v.9 no.2
    • /
    • pp.27-33
    • /
    • 2004
  • Magnetic properties of $Nd_4Fe_{77.5}B_{18.5}$ compound in term of exchange coupling between $Nd_2Fe_{14}B$ and $Fe_3B$ magnetic nano crystals in melt spun powders were characterized by varying the quenching speed in mass production line. The exchange coupled phenomenon was characterized as functions of nano crystal size and volume fraction of each magnetic phase which was possible by employing Henkel plot (${\delta}M$) and refined Mossbauer spectroscopy. The optimized magnetic properties obtained from the present volume production line were: $B_r= 11.73 kG,{_i}H_c/ = 3.082 kOe$, and $(BH)_{max} = 12.28 MGOe.$ The volume fraction of each magnetic phase for those conditions giving the grain size of 10 nm were ${\alpha}-Fe; 4.2%, Fe_3B; 60.1 %$, and $Nd_2Fe_{14}B; 35.7%$. The superior magnetic properties in the $Nd_2Fe_{14}Fe_3B$ based nanocomposites were confirmed to be dependant on the volume fraction of $Fe_3B$.

A Case Study of an Optimum Lot Size of Press Line (프레스 라인 적정 로트 크기의 결정에 관한 사례 연구)

  • Kim, Yearn-Min
    • IE interfaces
    • /
    • v.24 no.3
    • /
    • pp.241-247
    • /
    • 2011
  • This paper develops a mathematical model which searches an optimum lot size of a press line, and applies this model to the scheduling of the press line. This mathematical model is not a widely studied cost model but a model which considers the utilization of the press line under a lean production system. In this paper, the optimum lot size is a minimum lot size which does not exceed the total work time of the press line. A production volume and the priority of the production in the press line are adjusted using this optimum lot size. A mathematical model developed in this paper will allow determining the optimum lot size easily in case of variable production environments such as an introduction of a new product and a fluctuation of production volume of each item. Therefore, our model will make a better scheduling of the press line and will enhance the utilization of it.

Method of tumor volume evaluation using magnetic resonance imaging for outcome prediction in cervical cancer treated with concurrent chemotherapy and radiotherapy

  • Kim, Hun-Jung;Kim, Woo-Chul
    • Radiation Oncology Journal
    • /
    • v.30 no.2
    • /
    • pp.70-77
    • /
    • 2012
  • Purpose: To evaluate the patterns of tumor shape and to compare tumor volume derived from simple diameter-based ellipsoid measurement with that derived from tracing the entire tumor contour using region of interest (ROI)-based 3D volumetry with respect to the prediction outcome in cervical cancer patients treated with concurrent chemotherapy and radiotherapy. Materials and Methods: Magnetic resonance imaging was performed in 98 patients with cervical cancer (stage IB-IIIB). The tumor shape was classified into two categories: ellipsoid and non-ellipsoid shape. ROI-based volumetry was derived from each magnetic resonance slice on the work station. For the diameter-based surrogate "ellipsoid volume," the three orthogonal diameters were measured to calculate volume as an ellipsoid. Results: The more than half of tumor (55.1%) had a non-ellipsoid configuration. The predictions for outcome were consistent between two volume groups, with overall survival of 93.6% and 87.7% for small tumor (<20 mL), 62.9% and 69.1% for intermediate-size tumor (20-39 mL), and 14.5% and 16.7% for large tumors (${\geq}$40 mL) using ROI and diameter based measurement, respectively. Disease-free survival was 93.8% and 90.6% for small tumor, 54.3% and 62.7% for intermediate-size tumor, and 13.7% and 10.3% for large tumor using ROI and diameter based method, respectively. Differences in outcome between size groups were statistically significant, and the differences in outcome predicted by the tumor volume by two different methods. Conclusion: Our data suggested that large numbers of cervical cancers are not ellipsoid. However, simple diameter-based tumor volume measurement appears to be useful in comparison with ROI-based volumetry for predicting outcome in cervical cancer patients.

Assessment of Breast Volume Change after Transverse Rectus Abdominis Myocutaneous Flap

  • Park, Sang Uk;Shim, Jeong Su
    • Archives of Plastic Surgery
    • /
    • v.39 no.6
    • /
    • pp.631-635
    • /
    • 2012
  • Background The evaluation of a breast after breast reconstruction depends on a surgeon's subjective criteria. We used computed tomography (CT) scans to obtain an objective evaluation of the postoperative results by measuring the breast volume of patients who had undergone breast reconstruction using pedicled transverse rectus abdominis myocutaneous (TRAM) flaps. This research will help in the objective postoperative evaluation of reconstructed breasts, and also in the preoperative flap size designs. Methods A total of 27 patients underwent breast reconstruction using pedicled TRAM flaps after mastectomy from September 2007 to July 2010. Of these, 10 patients who were followed up and underwent CT scans 2 or more times during the follow-up period were included in this study. We evaluated the change in breast volume over time using CT scans, and the interval breast volume change between CT scans. Results All of the 10 patients' reconstructed breasts showed a volume decrease over time. The breast volume changes in the intervals between CT scans were as follows: 5.65% decrease between the first CT and second CT scan, 2.3% decrease between the second CT and third CT scan, (statistically significant) and 1.89% decrease between the third CT and forth CT scan. (not statistically significant). Conclusions This research shows the possibility of objectively evaluating the postoperative breast volume changes. The findings will be helpful in designing the size of TRAM flaps to use on defects after mastectomy. Based on these results, we should also closely observe the reconstructed breast volume for at least 2 years.