• Title/Summary/Keyword: Volume resistivity

Search Result 229, Processing Time 0.027 seconds

Electrical Resistivity-Measurements for the Detection of Fracture Zones in the Woraksan Granitic-Bodies (월악산화강암체의 파쇄대규명을 위한 전기비저항탐사)

  • 김지수;권일룡
    • The Journal of Engineering Geology
    • /
    • v.7 no.2
    • /
    • pp.113-126
    • /
    • 1997
  • Electrical resistivity methods of dipole - dipole array profiling and Schiumberger array sounding were tested on a segment of the Woraksan granitic batholith for the research into the imaging of irregular attitudes of fracture zones in the crystaaline rock in terms of processing and interpretation schemes. By the dipole - dipole array method, inhomogeneities such as small scale of fracture zones were properly delineated down at some depth even within hard rock environment. Fracture zones were interpreted to be at the boundaries between the high amplitude zone and very low amplitude zone in the resistivity plot and they were also successfully outlined in two - dimensional layer and pseudo - three - dimensional volume constructed by the incorporation of vertical sounding data. The surface location of the fracture zones was correlated by the zero - crossing point in the VLF(very low frequency) electromagnetic data. Pseudo - three - dimensional attitudes of fracture zones were efficiently illuminated by optimum projection angle. The mean of bulk resistivity for the Woraksan granite and the near fracture zones is estimated to be approximately of 4,000 ohm - m which is much higher than the value of 700 ohm - m for the Rwachunri limesilicate environment. This difference is due to both the rock type, i.e., biotite granite vs limesilicate, and the occurrence of secondary openings of fold and fault associated with the intrusion of granite. In this study statistical analyses on the resistivity color plot were performed in terms of three representative statistical moments, i.e., standard deviation, skewness, and kurtosis. The fracture zones in the standard deviation plot were characterized by the higher value, compared to the value of homogeneous portion. The upper boundary of the high resistivity zone was also successfully delineated in the skewness and kurtosis plots.

  • PDF

Study on Microstructure and Electrical Properties of Cement Mortar Containing Conductive Fibers (전도성 섬유가 함유된 시멘트 모르타르의 미세구조 및 전기적 특성 연구)

  • Park, Jong-Gun;Seo, Dong-Ju;Lim, Doo-Yeol;Lee, Yu-Jae;Heo, Gwang-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.3
    • /
    • pp.72-83
    • /
    • 2022
  • This paper studied the effect on the microstructure, electrical properties, and compressive strength of cement mortar containing carbon fiber (CF) and steel fiber (SF), which are conductive materials. The resistivity of conductive fiber-reinforced cement mortar (FRCM) was measured using the 4-probe method, and the compressive strength was measured based on the compression test. Their performance was compared and reviewed with plain mortar (PM). Furthermore, the surface shape and composition of the fracture surface of the conductive FRCM were analyzed using a scanning electron microscope (SEM) and an energy disperse X-ray spectrometer (EDS). The results showed that the resistivity gradually increased as the curing time increased in all specimens, whereas the resistivity decreased significantly as the fiber volume fraction increased. Adding steel fibers up to 1.25% did not affect the resistivity of cement mortar considerably. On the contrast, the resistivity of carbon fiber was somewhat decreased even at low contents (ie, 0.1 to 0.3%), and thereafter, it was significantly decreased. The percolation threshold of the conductive CFRCM containing CF used in this experiment was 0.4%, and it is judged to be the optimum carbon fiber dosage to maximize the conductive effect while maintaining the compressive strength performance as much as possible. For the surface shape and composition analysis of conductive FRCM, the fracture surface was observed through SEM-EDS. These results are considered to be very useful in establishing the microstructure mechanism of reinforcing fibers in cement mortars.

Electrical Properties of Organic/lnorganic Hybrid Composites for Insulation materials (유기/무기 복합 절연재료의 전기적 특성)

  • 깅상철;김현석;옥정빈;안명진;박도현;이건주
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.78-83
    • /
    • 2001
  • In this work, the surface of inorganic fillers were modified with some functional groups such as stearic acid, aliphatic long chain, vinylsilane and aminosilane to control the interaction between inorganic fillers and polymer matrix. Ethylene-vinyl acetate copolymers (EVA) with various amount of vinyl-acetate content and copolyether-ester elastomer were used as polymer matrix. The addition of inorganic fillers increases flame retardancy, but results in steep drop of electrical and mechanical properties, which may be caused by the defect in the interface between organic/inorganic hybrid composites. The hybrid composites are found to show better mechanical properties and higher volume resistivities as inorganic fillers are well dispersed and have good adhesion with polymer matrix. Also, the most effective type of functional group coated on fillers depends on the chemical structure of polymer.

  • PDF

A Study on the Characteristics of Two-Phase Flow by Driven Bubbles in a Liquid Bath

  • Oh, Yool-Kwon;Seo, Dong-Pyo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.44-50
    • /
    • 2005
  • In the present study, the characteristics of upward bubble flow were experimentally investigated in a liquid bath. An electro-conductivity probe was used to measure local volume fraction and bubble frequency. Since the gas was concentrated at the near the nozzle, the flow parameters were high near the nozzle. In general their axial and radial values tended to decrease with increasing distance. For visualization of flow characteristics, a Particle Image Velocimetry (PIV) and a thermo-vision camera were used in the present study. The experimental results showed that heat transfer from bubble surface to water was largely completed within z = 10 mm from the nozzle, and then the temperature of bubble surface reached that of water rapidly. Due to the centrifugal force, the flow was more developed near the wall than at bubble-water plume. Vortex flow in the bottom region was relatively weaker than that in the upper region.

The Analysis of HVDC Cable Oil Swelling Characteristics on the Silicone Rubber (HVDC 절연유 중에서 Silicone Rubber의 팽윤특성 분석)

  • Lee, T.H.;Kim, N.Y.;Kim, J.N.;Jeon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.623-624
    • /
    • 2007
  • This work examines the effects of swelling MI type HVDC cable oil on the semiconductive silicone rubber and silicone rubber as used in accessories for application on outdoor termination (EBA) slip on sleeve. The behavior of volume resistivity is monitored as a function of the amount of cable oil diffused into the material. Resistivities of semiconductive silicone samples up to the typical insulator range (${\sim}10^{10}{\Omega}-cm$) are observed as a consequence of swelling due to the presence of the diffused oil. The measured volume resistivities of the oil-impregnated semiconductive silicone rubber are compared to desired value as function of stress relief cone.

  • PDF

Flame Retardancy and Electrical/Mechanical Properties of LDPF/EVA Blend (LDPE/EVA Blend의 난연성 및 전기/기계적 특성)

  • Ryu, Boo-Hyung;Lee, Chung;Kim, Ki-Yup
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.4
    • /
    • pp.99-104
    • /
    • 2008
  • In this research, magnesium hydroxide as a flame retardant agents and zinc borate as a synergist were mixed with LDPF/EVA blended samples, in order to improve their flame retardancy. We attempted to select the best mixing ratio of the LDPF/EVA blend and the optimum amount of magnesium hydroxide and zinc borate by the comparison and analysis of the flame retardancy, the electrical properties such as the volume resistivity and dielectric loss tangent, and the mechanical properties such as the tensile strength and elongation at break. Particularly, specimen which is the 6phr of zinc borate and 10phr of magnesium hydroxide 70/30phr adding to the LDPF/EVA blended samples has been most excellent in flame retardancy and electrical/mechanical properties.

Effects of Dried Days on Properties of Seawater and Freshwater Flooded CSPE in NPPs

  • Jeon, Hwang-Hyun;Lee, Jeong-U;Jeon, Jun-Soo;Lee, Seung-Hoon;Shin, Yong-Deok
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1162-1168
    • /
    • 2015
  • Accelerated thermal aging of chlorosulfonated polyethylene (CSPE) was performed for 0 days, 80.82 days, and 161.63 days at 100℃, which is equivalent to 0 y, 40 y, and 80 y of aging, respectively, at 50℃. After freshwater flooding, the volume electrical resistivity of CSPE was highest after 180 days of drying, and its insulating property recovered when dried for more than 300 days. The dielectric constant of the CSPE was not measured after seawater flooding. The dielectric constant of the accelerated thermally aged CSPE was higher after freshwater flooding than that before seawater flooding. The bright, open pores of CSPE were converted into dark, closed pores after seawater flooding, and the dark, closed pores of the accelerated thermally aged CSPE samples were partly converted into bright, open pores after freshwater flooding. The apparent density of CSPE increased slightly whereas its elongation at break (EAB) decreased until 80 y of accelerated thermal aging before seawater flooding. The peak binding energies of oxygen in the non-accelerated and accelerated thermally aged CSPE for 40 y and 80 y were shifted by more than 1.0 eV after seawater and freshwater flooding. The CH2 content in the non-accelerated and accelerated thermally aged CSPE for 40 y and 80 y after seawater flooding for 5 days was lower than that before seawater flooding whereas atoms such as Cl, O, Pb, Al, Si, Sb, and S that are related to conducting ions such as Na+, Cl-, Mg2+, SO4 2-, and K+ were relatively increased.

A Characteristics of Zn-Al-Cu System Pb-free Solder Alloys for Ultra High Temperature Applications (초고온용 Zn-Al-Cu계 Pb-free 솔더 합금의 특성)

  • Kim Seong-Jun;Na Hye-Seong;Han Tae-Kyo;Lee Bong-Keun;Kang Cung-Yun
    • Journal of Welding and Joining
    • /
    • v.23 no.6
    • /
    • pp.93-98
    • /
    • 2005
  • The purpose of this study is to investigate the characteristics of pb-free $Zn-(3\~6)\%Al-(1\~6)\%Cu$ solder alloys for ultra high temperature(>573K) which applied to air craft, space satellite, automotive, oil, gas well exploration and data logging of geo-thermal wells. Melting range, solderability, electric resistivity, microstructure and mechanical properties were examined with solder alloys casted in Ar gas atmosphere. $Zn-4\%Al-(1\~3)\%Cu,\;Zn-5\%Al-(2\~4)\%Cu\;and\;Zn-6\%Al-(3\~5)\%Cu$ alloys satisfied the optimum melting range of 643 to 673k for ultra high temperature solder. A melting temperature increased with increasing Cu content, but decreased with increasing Al content. The spreadability was improved with increasing hi content. But the content of Cu had no effect on the spreadability. The electric resistivity was lowered with increasing Al and decreasing Cu content. In all Zn-Al-Cu solder alloys, primary dendritic $\varepsilon$ phase(Zn-Cu), dendritic $\eta$ phase(Zn-Cu-Al), $\alpha(Al-Zn)-\eta$ eutectic and eutectoid phase were observed. The addition of Al increased the volume fraction of eutectic and eutectoid phase and it decreased f phases. Also, the addition of Cu increased slightly the volume fraction of e, the eutectic and eutectoid phases. With increasing total content of Al and Cu, a hardness and a tensile strength were linearly increased, but anelongation was linearly decreased.

A Novel Route to Realise High Degree of Graphitization in Carbon-carbon Composites Derived from Hard Carbons

  • Mathur, R.B.;Bahl, O.P.;Dhami, T.L.;Chauhan, S.K.
    • Carbon letters
    • /
    • v.4 no.3
    • /
    • pp.111-116
    • /
    • 2003
  • Carbon/carbon composites were developed using PAN based carbon fibres and phenolic resin as matrix in different volume fractions and heat treated to temperatures between $1000^{\circ}C$ to $2500^{\circ}C$. Although both the starting precursors are nongraphitizing hard carbons individually, their composites lead to very interesting properties e.g. x-ray diffractograms show the development of graphitic phase for composites having fibre volume fractions of 30~40%. Consequently the electrical resistivity of such composites reaches a value of $0.8\;m{\Omega}cm$, very close to highly graphitic material. However, it was found that by increasing the fibre volume fraction to 50~60%, the trend is reversed. Optical microscopy of the composites also reveals the development of strong columnar type microstructure at the fibre (matrix interface due to stress graphitization of the matrix. The study forcasts a unique possibility of producing high thermal conductivity carbon/carbon composites starting with carbon fibres in the chopped form only.

  • PDF

Properties of Phosphorus Doped ${\mu}c$-Si:H Thin Films Prepared by PECVD (PECVD에 의하여 제조된 Phosphorus-Doped ${\mu}c$-Si:H 박막의 특성)

  • Lee, J.N.;Moon, D.G.;Ahn, B.T.;Im, H.B.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1992.11a
    • /
    • pp.22-27
    • /
    • 1992
  • Phosphorus doped hydrogenated microcrystalline silicon (${\mu}c$-Si:H) thin films were deposited by PECVD (Plasma Enhanced Chemical Vapour Deposition) method using 10.2% $SiH_4$ gas (diluted in Ar) and 308ppm $PH_3$ gas (diluted in Ar). The structural, optical and electrical properties of the films were investigated as a function of substrate temperature(15 to $400^{\circ}C$) and RF power(10 to 120W). The thin film deposited by varing substrate temperature had columnar structure and microcrystalline phase. The volume fraction of microcrystalline phase in the films deposited at RF power of 80W, increased with increasing substrate temperature up to $200^{\circ}C$, and then decreased with further increasing substrate temperature. Volume fraction of microcrystalline phase increased monotonously with increasing RF power at substrate temperature of $250^{\circ}C$. With increasing volume fraction of microcrystalline, electrical resistivity of films decreased to 0.274 ${\Omega}cm$.

  • PDF