• Title/Summary/Keyword: Volume Of fluids method

Search Result 281, Processing Time 0.028 seconds

FREE SURFACE FLOW COMPUTATION USING MOMENT-OF-FLUID AND STABILIZED FINITE ELEMENT METHOD (Moment-Of-Fluid (MOF) 방법과 Stabilized Finite Element 방법을 이용한 자유표면유동계산)

  • Ahn, H.T.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.228-230
    • /
    • 2009
  • The moment-of-fluid (MOF) method is a new volume-tracking method that accurately treats evolving material interfaces. Based on the moment data (volume and centroid) for each material, the material interfaces are reconstructed with second-order spatial accuracy in a strictly conservative manner. The MOF method is coupled with a stabilized finite element incompressible Navier-Stokes solver for two fluids, namely water and air. The effectiveness of the MOF method is demonstrated with a free-surface dam-break problem.

  • PDF

FRACTIONAL STEP METHOD COMBINED WITH VOLUME-OF-FLUID METHOD FOR EFFICIENT SIMULATION OF UNSTEADY MULTIPHASE FLOW (비정상 다상유동의 효율적 수치모사를 위한 VOF가 적용된 Fractional Step 기법)

  • Lee, Kyong-Jun;Yang, Kyung-Soo;Kang, Chang-Woo
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.99-108
    • /
    • 2010
  • Fractional Step Methods(FSM) are popular in simulation of unsteady incompressible flow. In this study, we demonstrate that FSM, combined with a Volume-Of-Fluid method, can be further applied to simulation of multiphase flow. The interface between the fluids is constructed by the effective least squares volume-of-fluid interface reconstruction algorithm and advected by the velocity using the operator split advection algorithm. To verify our numerical methodology, our results are compared with other authors' numerical and experimental results for the benchmark problems, revealing excellent agreement. The present FSM sheds light on accurate simulation of turbulent multiphase flow which is found in many engineering applications.

ADAPTIVE MOMENT-OF-FLUID METHOD : A NEW VOLUME-TRACKING METHOD FOR MULTIPHASE FLOW COMPUTATION

  • Ahn, Hyung-Taek
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.18-23
    • /
    • 2009
  • A novel adaptive mesh refinement(AMR) strategy based on the Moment-of-Fluid(MOF) method for volume-tracking dynamic interface computation is presented. The Moment-of-Fluid method is a new interface reconstruction and volume advection method using volume fraction as well as material centroid. The adaptive mesh refinement is performed based on the error indicator, the deviation of the actual centroid obtained by interface reconstruction from the reference centroids given by moment advection process. Using the AMR-MOF method, the accuracy of volume-tracking computation with evolving interfaces is improved significantly compared to other published results.

A Study on the Level-Set Scheme for the Analysis of the Free Surface Flow by a Finite Volume Method (유한체적법에 의한 자유수면 유동해석에서 Level-Set 기법에 대한 연구)

  • Il-Ryong Park;Ho-Hwan Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.2
    • /
    • pp.40-49
    • /
    • 1999
  • A Finite Volume Method for the two-dimensional incompressible, two-fluids Navies-Stokes equation and level-set scheme are used to analyse the interface of two fluids, free-surface flow. The numerical characteristics and the applicability of level-set scheme are brief1y investigated and appraised by solving oscillating small surface wave in a water tank and dam break problems. In the numerical results, a method for improving the convergence of the solution is presented.

  • PDF

A VOLUME OF FLUID METHOD FOR FREE SURFACE FLOWS AROUND SHIP HULLS (선체주위 자유수면 유동 해석을 위한 VOF법 연구)

  • Park, I.R.
    • Journal of computational fluids engineering
    • /
    • v.20 no.1
    • /
    • pp.57-64
    • /
    • 2015
  • This paper describes a volume of fluid(VOF) method, mRHRIC for the simulation of free surface flows around ship hulls and provides its validation against benchmark test cases. The VOF method is developed on the basis of RHRIC method developed by Park et al. that uses high resolution differencing schemes to algebraically preserve both the sharpness of interface and the boundedness of volume fraction. A finite volume method is used to solve the governing equations, while the realizable ${\kappa}-{\varepsilon}$ model is used for turbulence closure. The present numerical results of the resistance performance tests for DTMB5415 and KCS hull forms show a good agreement with available experimental data and those of other free surface methods.

A NEW NUMERICAL APPROXIMATION OF DIFFUSION FLUX IN UNSTRUCTURED CELL-CENTERED METHOD (비정렬 셀 중심 방법에서 확산플럭스의 새로운 수치근사방법)

  • Myoung H.K.
    • Journal of computational fluids engineering
    • /
    • v.11 no.1 s.32
    • /
    • pp.8-15
    • /
    • 2006
  • The existing approximations of diffusion flux in unstructured cell-centered finite volume methods are examined in detail with each other and clarified to have indefinite expressions in several respects. A new numerical approximation of diffusion flux at cell face center is then proposed, which is second-order accurate even on irregular grids and may be easily implemented in CFD code using cell-centered finite volume method with unstructured grids composed of arbitrary convex polyhedral shape.

CONSERVATIVE FINITE VOLUME METHOD ON BOUNDARY TREATMENTS FOR FLOW NETWORK SYSTEM ANALYSES (유동망 시스템 해석을 위한 경계처리에 대한 보존형 유한체적법)

  • Hong, S.W.;Kim, C.
    • Journal of computational fluids engineering
    • /
    • v.14 no.1
    • /
    • pp.35-44
    • /
    • 2009
  • To adequately analyze flows in pipe or duct network system, traditional node-based junction coupling methods require the junction loss which is specified by empirical or analytic correlations. In this paper, a new finite volume junction coupling method using a ghost junction cell is developed by considering the interchange of linear momentum as well as the important wall-effect at junction without requiring any correlation on the junction loss. Also, boundary treatment is modified to preserve the stagnation enthalpy across boundaries, such as pipe-end and the interface between junction and branch. Also, the computational accuracy and efficiency of the Godunov-type finite volume schemes are investigated by tracing the total mechanical energy of rapid transients due to sudden closure of valve at downstream end.

AN EULERIAN-BASED DROPLET IMPINGEMENT AND ICE ACCRETION CODE FOR AIRCRAFT ICING PREDICTION (항공기 결빙 예측을 위한 Eulerian 기반 액적 충돌 및 결빙 증식 코드)

  • Jung, S.K.;Myong, R.S.;Cho, T.H.
    • Journal of computational fluids engineering
    • /
    • v.15 no.2
    • /
    • pp.71-78
    • /
    • 2010
  • As a step toward accurate prediction of droplet impingement and ice accretion on aircraft, an Eulerian-based droplet impingement and ice accretion code for air flows around an airfoil containing water droplets is developed. A CFD solver based on the finite volume method was also developed to solve the clean airflow. The finite-volume-based approach for simulating droplet impingement on an airfoil was employed owing to its compatibility with the CFD solver and robustness. For ice accretion module, a simple model based on the control volume is combined with the droplet impingement module that provides the collection efficiency. To validate the present code, it is compared with NASA Glenn IRT (Icing Research Tunnel) experimental data and other well-known icing codes such as LEWICE and FENSAP-ICE. It is shown that the collection efficiency and shape of ice accretion are in good agreement with previous experimental and simulation results.

Blood Flow Characteristics in the Abdominal Aortic Bifurcation with Stenosis (협착이 발생된 복부대동맥 분기부에서의 혈액운동특성)

  • Yoo, S.S.;Suh, S.H.;Roh, H.W.;Jo, M.T.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1995 no.05
    • /
    • pp.109-112
    • /
    • 1995
  • The three dimensional, steady flows of blood and blood analogue fluids in the abdominal aortic bifurcation are simulated using the finite volume method. The objective of this investigation is to understand the generation and progression of site-specific atherosclerosis from a hydrodynamic point of view. Due to complexity of blood in conducting experimental study, aqueous polymer solutions are used as the substitutional fluids. For comparison purpose of the flow characteristics of blood and substitutional fluids, rheologically different fluids such as water soluble polymers of Carbopol-934 and Separan AP-273 are employed for the numerical simulation. In order to understand the role of hydrodynamics in the formation and development of atherosclerosis lesions flow velocities, pressures and shear stresses along the vessel are calculated for steady flows.

  • PDF

CHARACTERISTICS OF INTERFACE BETWEEN TWO-PHASE FLUIDS FLOW IN A FURNACE WITH POROUS MEDIUM (다공성 매질이 존재하는 용광로 내부 이상유체 경계면의 특성)

  • Park, G.M.;Lee, D.J.;Lee, J.H.;Yoon, H.S.
    • Journal of computational fluids engineering
    • /
    • v.21 no.1
    • /
    • pp.110-116
    • /
    • 2016
  • The present study numerically investigated the deformation of the interface of two-phase fluids flow in a blast furnace. To simulate three-dimensional(3D) incompressible viscous two-phase flow in the furnace filled with the air and molten iron, the volume of fluid(VOF) method based on the finite volume method has been utilized. In addition, the porous medium with the porosity has been considered as the bed of the particles such as cokes and char etc. For the comparison, the single phase flow and the two-phase flow without the porosity have been simulated. The two-phase flow without porosity condition revealed the smooth parabolic profile of the free surface near the outlet. However, the free surface under the porosity condition formed the viscous finger when the free surface was close to the outlet. This viscous finger accelerated the velocity of the free surface falling and the outflow velocity of the fluids near the outlet.