In this paper, the new hybrid adaptive Volterra filter was proposed to be applied for compensating the nonlinear distortion of memoryless nonlinear systems with saturation characteristics. Through computer simulations as well as the analytical analysis, it could be shown that it is possible for both conventional Volterra filter and proposed hybrid Volterra filter, to be applied for linearizing the memoryless nonlinear system with nonlinear distortion. Also, the simulations results demonstrated that the proposed hybrid filter may have faster convergence speed and better capability of compensating the nonlinear distortion than the conventional Volterra filter.
본 논문에서는 필터의 계수들을 이용하여 재귀적 3차 Volterra 필터의 안정성에 대한 충분 조건을 유도하고자 한다. Volterra 필터는 기억성이 있는 비선형 시스템을 모델링하는데 있어서 매우 효과적이다. 그러나 비재귀적 Volterra 필터는 비선형 시스템을 모델링하는데 있어서 많은 수의 계수를 필요로 한다는 것이 잘 알려져 있다. 이러한 이유로 비재귀적 구현보다 적은 수의 계수를 요구하는 재귀적 Volterra 필터를 많이 고려한다. 그러나, 재귀적 Volterra 필터의 주된 문제점은 필터에 내재하는 비안정성이다. 본 논문에서는 필터의 입력신호의 크기가 유한한 경우에 있어서 재귀적 이산시간 3차 Volterra 필터의 출력이 유한하게 되는 간단한 조건에 대하여 보고하고자 한다.
본 논문에서는 부대역 신호를 사용한 병렬 적응 비선형 Volterra 필터를 소개하고, 이 시스템의 성능을 분석하는 것을 주요 내용으로 한다. 연구 결과 제시한 부대역 신호를 사용한 적응 Volterra 필터는 수렴성이 우수함을 입력신호의 상관함수의 eigenvalue 분포를 사용하여 해석적으로 도출되었으며, 이러한 응용이 최근에 보고된 적응 반향 제거기에서 유용하게 사용될 수 있음을 이론적으로 밝혔다. 또한 각 부대역 에서의 최적필터를 이론적으로 유도하였고 컴퓨터 모의실험으로 이를 검증하였다.
The adaptive algorithm for the Volterra filter is considered. Owing to its simplicity, the LMS algorithm for adaptive Volterra filter(AVF) is widely used as in linear adaptive filters. However, the convergence speed is unsatisfactory. For improving the convergence speed, the frequency domain LMS second order adaptive Volterra filter(FLMS-AVF) is proposed and analyzed. We show that the time and frequency domain LMS AVF's have the same steady state performance under approprate conditons. Moreover, it can be shown that this algorithm can improve the convergence speed significantly by applying self-orthogonalizing method.
본 논문에서는 super-RENS 디스크의 채널 모델링을 위하여 압축 센싱 알고리즘에 기반한 sparse Volterra 필터에 대해 연구하였다. Super-RENS 디스크 시스템에서 심한 비선형 심벌간 간섭(ISI)이 발생하는 것은 익히 알려진 사실이다. 메모리를 가진 비선형 시스템은 Volterra 급수로 모델링할 수 있다. 또한, 압축 센싱은 측정치로부터 성긴 또는 압축된 신호를 복원할 수 있다. 이러한 이유로 super-RENS의 성긴 특성을 갖는 read-out 채널을 예측하기 위해 압축 센싱 알고리즘을 사용하였다. 평가 결과는 압축 센싱 알고리즘으로 super-RENS의 read-out 채널을 위한 sparse Volterra 모델을 효과적으로 구성할 수 있음을 보여준다.
기존의 반향신호 억제기는 스피커와 마이크 사이의 선형 관계만을 고려하여, 마이크로 입력된 신호로 부터 반향신호를 억제한다. 하지만 실제적으로 스피커는 비선형성을 가지고 있으며, 이 때문에 기존의 반향신호 억제기는 비선형 반향신호 환경에서 그 성능이 저하된다. 본 논문에서는 스피커의 비선형성을 모델링하기에 적합한 주파수영역상의 Least square 방식의 Volterra filter를 적용한 비선형 반향신호 억제기를 제안하였다. 객관적 성능평가 방법인 Echo Return Loss Enhancement (ERLE)와 Speech Attenuation(SA)를 도입하여 제안된 알고리즘의 성능 검증에 사용하였다. 제안된 알고리즘이 기존의 반향신호 억제기보다 선형 및 비선형 반향 신호 환경에서 우수한 성능을 보이는 것을 확인하였다.
The objective of this paper is to present a new adaptive nonlinear compensation method, which is based upon the Pth-order inverse theory and can be implemented in a systematic way, for weakly nonlinear systems that can be modeled by a Volterra series. In particular, employment of the proposed approach for the linearization of a given nonlinear system leads to the effective elimination of (up to a required order) nonlinearities in the overall system output. To demonstrate the feasibility of the proposed method, simulation results using a satellite communication system model are also provided.
In this paper, Kalman-LMS algorithm is further extended to nonlinear system identification, whereby Kalman-LMSalgorithm and third-order Volterra filer are utilized.
본 논문에서는 적응 2차 볼테라 필터를 효율적으로 구현할 수 있는 새로운 방법을 제안한다. 연산량 감소를 위해 제안된 UCFD-SVF는 수렴 성능이 저하되는 단점이 있다. UCFD-SVF의 적응 필터 계수가 적응이 진행되면서 그 에너지가 급격하게 증가하지 않는다는 점을 이용하여 적응 필터 계수를 주기적으로 초기화는 방법을 제안하였다. 또한 일정한 수렴 성능을 보장하기 위해 가변적인 간격으로 적응 필터 계수를 초기화하는 방법을 제안하였고, 비정상 환경에서 우수한 수렴 특성을 가짐을 적응 시스템 확인 응용을 위한 컴퓨터 모의 실험을 통해 보였다.
본 논문에서는 bispectra를 위한 고전적 주영역 (classical principal domain)이 2계 Volterra 모델의 출력을 결정짓는데 사용되면 그 출력은 완전하지 못하게 될 것임을 지적한다. 이러한 불완전함은 DFT의 주기적 특성과 관련이 있다. 이런 이유로, 본 논문의 목적은 비선형 시스템의 응답의 추정을 향상기키는 Volterra 커널을 위한 확장된 주영역 (extended principal domain)을 제안하는데 있다. 확장된 주영역을 정의 내리기 위하여, 2차원 DFT와 Volterra 모델의 2계 요소와 정사각형 필터와의 관계를 사용하여 이산 시간 영역 Volterra 모델에서 새로운 이산 주파수 영역의 Volterra 모델을 유도하였다. 확장된 영역이 모델의 출력에 미치는 영향을 DFT의 주기성 측면에서 해석을 하였다. 컴퓨터 모의 실험을 통하여, Volterra 모델링에서 확장된 주영역의 영향을 살펴보았다. 모의 실험 결과에 의하면, Volterra 모델의 출력을 계산하는 과정과 Volterra 모델의 계수를 추정하는데 있어서 매우 중요한 역할을 함을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.