DOI QR코드

DOI QR Code

Nonlinear Acoustic Echo Suppressor based on Volterra Filter using Least Squares

Least Squares 기반의 Volterra Filter를 이용한 비선형 반향신호 억제기

  • Park, Jihwan (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Lee, Bong-Ki (Department of Electronics and Computer Engineering, Hanyang University) ;
  • Chang, Joon-Hyuk (Department of Electronics and Computer Engineering, Hanyang University)
  • 박지환 (한양대학교 전자컴퓨터통신공학과) ;
  • 이봉기 (한양대학교 전자컴퓨터통신공학과) ;
  • 장준혁 (한양대학교 전자컴퓨터통신공학과)
  • Received : 2013.10.18
  • Accepted : 2013.11.22
  • Published : 2013.12.25

Abstract

A conventional acoustic echo suppressor (AES) considering only room impulse response between a loudspeaker and a microphone eliminates acoustic echo from the microphone input. However, in a nonlinear acoustic echo environment, the conventional AES degraded because of a nonlinearity of the loudspeaker. In this paper, we adopt AES based on the frequency-domain second-order Volterra filter using Least Square method. For comparing performances, we conduct objective tests including Echo Return Loss Enhancement (ERLE) and Speech Attenuation (SA). The proposed algorithm shows better performance than the conventional in both linear and nonlinear acoustic echo environments.

기존의 반향신호 억제기는 스피커와 마이크 사이의 선형 관계만을 고려하여, 마이크로 입력된 신호로 부터 반향신호를 억제한다. 하지만 실제적으로 스피커는 비선형성을 가지고 있으며, 이 때문에 기존의 반향신호 억제기는 비선형 반향신호 환경에서 그 성능이 저하된다. 본 논문에서는 스피커의 비선형성을 모델링하기에 적합한 주파수영역상의 Least square 방식의 Volterra filter를 적용한 비선형 반향신호 억제기를 제안하였다. 객관적 성능평가 방법인 Echo Return Loss Enhancement (ERLE)와 Speech Attenuation(SA)를 도입하여 제안된 알고리즘의 성능 검증에 사용하였다. 제안된 알고리즘이 기존의 반향신호 억제기보다 선형 및 비선형 반향 신호 환경에서 우수한 성능을 보이는 것을 확인하였다.

Keywords

References

  1. P.S.R. Diniz, Adaptive Filtering: Algorithm and Practical Implementation, Kluwer Academic Publishers, 1997.
  2. C. Faller and J. Chenm "Suppressing acoustic echo in a spectral envelope space," IEEE Trans. On Speech and Audio Process., Vol. 13, No. 5, pp. 1048-1062, Sep. 2005. https://doi.org/10.1109/TSA.2005.852012
  3. A. Guerin, G. Faucon, and R.L. Bouquin-Jeannes, "Nonlinear acoustic echo cancellation based on Volterra filters," IEEE Trans. on Speech and Audio Process., Vol. 11, No. 6, pp. 672-683, Nov. 2003. https://doi.org/10.1109/TSA.2003.818077
  4. F. Kuech and W. Kellermann, "Partitionaed block frequency-domain adaptive second-order Volterra filter," IEEE Trans. on Signal Process., Vol. 53, No. 2, pp. 564-575, Feb. 2005. https://doi.org/10.1109/TSP.2004.840684
  5. D. Comminiello, M. Scarpiniti, L.A. Azpicueta-Ruiz, J. Arenas-Garcia, and A. Uncini, "Functional link adaptive filters for nonlinear acoustic echo cancellation," IEEE Trans. on, Audio, Speech, and Langua. Process., Vol. 21, No. 7, pp. 1502-1512, Jul. 2013. https://doi.org/10.1109/TASL.2013.2255276
  6. S.G. McGovern, "Fast image method for impulse response calculations of box-shaped rooms," Applied Acoustics, Vol. 70, No. 1, pp. 182-189, Jan. 2009. https://doi.org/10.1016/j.apacoust.2008.02.003
  7. K.-H. Lee, J.-H. Chang, N. S. Kim, S. Kang, and Y. Kim, "Frequency-domain double-talk detection based on the Gaussian mixture model," IEEE Signal Processing Letters, Vol. 17, No. 5, pp. 453-456 May. 2010. https://doi.org/10.1109/LSP.2010.2043891
  8. S.Y. Lee and N.S. Kim, "A statistical model-based residual echo suppression," IEEE Signal Processing Letters, Vol. 14, No. 10, pp. 758-761, Oct. 2007. https://doi.org/10.1109/LSP.2007.896452