• Title/Summary/Keyword: Voltammetric determination

Search Result 78, Processing Time 0.021 seconds

Trace Mercury Determination by Differential Pulse Anodic Stripping Voltammetry Using Polythiophene-Quinoline/Glassy Carbon Modified Electrode

  • Yoo, Kwang-Sik;Woo, Sang-Beom;Jyoung, Jy-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.1
    • /
    • pp.27-31
    • /
    • 2003
  • A Polythiophene-quinoline/glassy carbon (PTQ/GC) modified electrode was developed for the determination of trace mercury in industrial waste water, natural water, soil, and other media. The electrode was prepared by the cyclic voltammetric polymerization of thiophene and quinoline on glassy carbon (GC) electrode by the potential application from -0.6 V to +2.0 V (50 mV/sec) in a solution of 0.1 M thiophene, quinoline and tetrabutyl ammonium perchlorate (TBAP) in acetonitrile. Optimum thickness of the polymer membrane on the GC electrode was obtained with 20 repeated potential cyclings. The redox behavior of Cu(Ⅱ) and Hg(Ⅱ) were almost identical on this electrode. The addition of 4-(2-pyridylazo)resorcinol (PAR) to the solution containing Cu(Ⅱ) and Hg(Ⅱ) allowed the separation of the components due to the formation of the Cu(Ⅱ)-PAR complex reduced at -0.8V, which was different from the Hg(Ⅱ) reduced at -0.5 V on a saturated calomel electrode (SCE). The calibration graph of Hg(Ⅱ) shows good linear relationship with the correlation factor of 0.9995 and the concentration gradient of 0.33 ㎂/㎠/ppb down to 0.4 ppb Hg. The method developed was successfully applied to the determination of mercury in samples such as river, waste water, and sea water.

Nanogold-modified Carbon Paste Electrode for the Determination of Atenolol in Pharmaceutical Formulations and Urine by Voltammetric Methods

  • Behpour, M.;Honarmand, E.;Ghoreishi, S.M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.4
    • /
    • pp.845-849
    • /
    • 2010
  • A gold nanoparticles modified carbon paste electrode (GN-CPE) has been used for the determination of atenolol (ATN) in drug formulations by cyclic voltammetry (CV), differential pulse voltammetry (DPV) and chronocoulometric methods. The results revealed that the modified electrode shows an electrocatalytic activity toward the anodic oxidation of atenolol by a marked enhancement in the current response in buffered solution at pH 10.0. The anodic peak potential shifts by -80.0 mV when compared with the potential using bare carbon paste electrde. A linear analytical curve was observed in the range of $1.96\;{\times}\;10^{-6}$ to $9.09\;{\times}\;10^{-4}\;mol\;L^{-1}$. The detection limit for this method is $7.3\;{\times}\;10^{-8}\;mol\;L^{-1}$. The method was then successfully applied to the determination of atenolol in tablets and human urine. The percent recoveries in urine ranged from 92.0 to 110.0%.

Voltammetric Determination of Cu(II) Ion at a Chemically Modified Carbon-Paste Electrode Containing 1-(2-pyridylazo)-2-naphthol (1-(2-Pyridylazo)-2-naphthol 수식전극을 사용한 Cu(II) 이온의 전압전류법적 정량)

  • Jun-Ung Bae;Hee Sook Jun;Hye-Young Jang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.8
    • /
    • pp.723-729
    • /
    • 1993
  • Cu(II) ion-responsive chemically modifed electrodes (CMEs) were constructed by incorporating 1-(2-pyridylazo)-2-naphthol (PAN) into a conventional carbon-paste mixture of graphite powder and Nujol oil. Cu(II) ion was chemically deposited on the surface of the PAN-chemically modified electrode in the absence of an applied potential by immersion of the electrode in a buffer solution (pH 3.2) containing Cu(II) ion, and then reduced at a constant potential in 0.1 M KNO$_3$. And a well-defined voltammetric peak could be obtained by scanning the potential to the positive direction. The electrode surface could be regenerated with exposure to acid solution and reused for the determination of Cu(II) ion. In 5 deposition / measurement / regeneration cycles, the response could be reproduced with 6.1${\%}$ relative standard deviation. In case of using the differential pulse voltammetry, the calibration curve for Cu(II) was linear over the range of 2.0 ${times}$ 10$^{-7}$ ∼ 1.0 ${times}$ 10$^{-6}$ M. And the detection limit was 6.0 ${times}$ 10$^{-8}$ M. Studies of the effect of diverse ions showed that Co, Ni, Zn, Pb, Mg and Ag ions added 10 times more than Cu(II) ion did not influence on the determination of Cu(II) ion, except EDTA and oxalate ions.

  • PDF

Adsorptive Stripping Voltammetrical Determination of Zirconium (흡착벗김 전압전류법적 지르코늄의 정량)

  • Choi, Won Hyung;Lee, Jin Sik;Kim, Do Hoon;Kim, Jong Cheol
    • Analytical Science and Technology
    • /
    • v.6 no.5
    • /
    • pp.425-433
    • /
    • 1993
  • Adsorptive stripping voltammetric determination method of trace zirconium using oxine as a ligand was studied. Optimal conditions found to be $2.5{\times}10^{-3}M$ borax buffer solution(pH 8.5) containing oxine concentration of $4{\times}10^{-8}M$. Accumulation potential was -0.2V, accumulation time was 400sec and scan rate was 4mV/sec. Calibration plots for zirconium are linear over the range of $1{\sim}100{\mu}g/L$ in optimal condition.

  • PDF

A study on Stripping Voltammetric Determination of Ag(I) by Poly(3-methylthiophene) Conducting Polymer Film Electrode Containing 18-crown-6 (18-crown-6을 포함하는 poly(3-methylthiophene) 전도성 고분자 막전극에 의한 Ag(I)의 벗김 전압-전류법적 정량에 관한 연구)

  • Lee, Ihn Chong;Sohn, Jeong-In;Kim, Kuk Gin
    • Analytical Science and Technology
    • /
    • v.7 no.2
    • /
    • pp.181-186
    • /
    • 1994
  • Using poly(3-methylthiophene) conducting polymer film electrodes, feasiblity for Ag determination by stripping voltammetry has been studied. Ag ions accumulated by complexation with 18-crown-6, which are existing on the surface of the polymer film electrode, migrate inside of polymer film through potential scanning within limited potential range, and then are reduced and oxidized on the glassy carbon substrate. Therefore, the polymer film must have proper thickness and porosity for easy penetration of Ag ions. On the basis of these experimental results, $5.0{\times}10^{-6}M$ Ag(I) in aqueous solution could be determined.

  • PDF

The Determination of Dopamine in the Presence of Ascorbic Acid at the Modified Glassy Carbon Electrode with Phytic Acid and Single-Walled Carbon Nanotubes

  • Bae, Si-Ra;Jeong, Hae-Sang;Jeon, Seung-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.12
    • /
    • pp.2363-2368
    • /
    • 2007
  • A glassy carbon electrode (GCE) modified with phytic acid (PA) and single-walled carbon nanotubes (SWNTs) were investigated by voltammetric methods in buffer solution. The PA-SWNTs/GCE-modified electrode demonstrated substantial enhancements in electrochemical sensitivity and selectivity towards dopamine (DA) in the presence of L-ascorbic acid (AA). The PA-SWNTs films promoted the electron transfer reaction of DA, while the PA film, acting as a negatively charged linker, combined with the positively charged DA to induced DA accumulation in the film at pH under 7.4. However, the PA film restrained the electrochemical response of the negatively charged AA due to the electrostatic repulsion. The anodic peak potentials of DA and AA could be separated by electrochemical techniques, and the interferences from AA were effectively eliminated in the DA determination. Linear calibration plots were obtained in the DA concentration range of 0.1-10 μM and the detection limit of the DA oxidation current was determined to be 0.06 μM at a signal-to-noise ratio of 3. The results indicated that the modified electrode is used to determine DA without interference from AA.

Detection of DNA Hybridization Characteristics Using Electrochemical methods (전기화학법을 이용한 DNA Hybridization 특성 검출)

  • Kim, Do-Kyun;Chang, Jeong-Soo;Kwon, Young-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1569-1571
    • /
    • 2002
  • The determination of DNA hybridization can apply the molecular biology research, clinic diagnostics, bioengineering, environment monitoring, food science and other application area. So, The determination of hybridization is very important for the improvement of DNA detection system. In this study, we report the characterization of the DNA hybridization by the electricalchemical methods. A new electrochemical biosensor is described for voltammetric detection of gene sequence related to probe oligonucleotide of bacterium Escherichia coli O157:H7. The biosensor involves the immobilization of a 18-mer probe oligonucleotide, which is complemetary to a specific gene sequence related to Escherichia coli O157:H7 on a gold electrode through specific adsorption. The probe oligonucleotide was used to determine the amount of target oligonucleotide in solution using mitoxantrone(MTX) as the electrochemical indicators. The cathodic peak currents $(I_{peak})$ of MTX were linearly related to the concentration of the target oligonucleotide sequence in the range $1[{\mu}M]{\sim}0.1[nM]$. The detection limit of this approach was 0.01[nM]. In addition, these indicators were capable of selectivity discriminating against various mismatching condition.

  • PDF

Electrochemical Behavior and Differential Pulse Polarographic Determination of Rifampicin in the Pharmaceutical Preparations

  • Hahn, Young-Hee;Shin, Sun-Mi
    • Archives of Pharmacal Research
    • /
    • v.24 no.2
    • /
    • pp.100-104
    • /
    • 2001
  • Differential pulse polarographic(DPP) analytical procedure for the rifampicin antibiotic, which can be applied to monitor its synthetic process from the starting antibiotic of rifamycin B or rifamycin SV has been developed based on the electrochemical reduction of an azomethine group. Rifampicin exhibited a cathodic peak due to the azomethine group in the side chain of 3-[(4-methyl-1-piperazinyl)imino]methyl moiety and another cathodic peak due to the carbonyl group in rifamycin SV by DPP. The experimental peak potential shift of an azomethine reduction was -73 mV/pH in the pH range between 3.0 and 7.5, agreeing with involvement of 4 e-and 5 $H^5$ in its reduction. By the cyclic voltammetric(CV) studies, the azomethine and the carbonyl reductions in rifampicin were processed irreversibly on the mercury electrode. The plot of peak currents vs. concentrations of rifampicin ranging $1.0{\times}10^{-7} M~$1.0{\times}10^{-5} M yielded a straight line with a correlation coefficient of 0.9996. The detection limit was $1.0{\times}10^{-8} M with a modulation amplitude of 50 mV DPP has been successfully applied for the determination of rifampicin in the pharmaceutical preparations.

  • PDF

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae;Kim, Byung-Kun;Choi, Han-Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.11
    • /
    • pp.3123-3127
    • /
    • 2010
  • A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

Electrochemical Determination of Bisphenol A at Carbon Nanotube-Doped Titania-Nafion Composite Modified Electrode

  • Kim, Byung Kun;Kim, Ji Yeon;Kim, Dong-Hwan;Choi, Han Nim;Lee, Won-Yong
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.4
    • /
    • pp.1065-1069
    • /
    • 2013
  • A highly sensitive electrochemical detection method for bisphenol A (BPA) has been developed by using multi-walled carbon nanotube (CNT)-doped titania-Nafion composite modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards BPA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric responses for BPA compared to that obtained with bare GC electrode. In addition, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, was added into the BPA sample solution in order to accumulate BPA through hydrophobic interaction between CTAB and BPA. The CNT-titania-Nafion/GC electrode gave a linear response ($r^2$ = 0.999) for BPA from $1.0{\times}10^{-8}$ M to $5.0{\times}10^{-6}$ M with a detection limit of $9.0{\times}10^{-10}$ M (S/N = 3). The modified electrode showed good selectivity against interfering species and also exhibited good reproducibility. The present electrochemical sensor based on the CNT-titania-Nafion/GC electrode was applied to the determination of BPA in food package samples.