DOI QR코드

DOI QR Code

Electrochemical Determination of Bisphenol A at Carbon Nanotube-Doped Titania-Nafion Composite Modified Electrode

  • Received : 2012.11.28
  • Accepted : 2013.01.07
  • Published : 2013.04.20

Abstract

A highly sensitive electrochemical detection method for bisphenol A (BPA) has been developed by using multi-walled carbon nanotube (CNT)-doped titania-Nafion composite modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards BPA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric responses for BPA compared to that obtained with bare GC electrode. In addition, cetyltrimethylammonium bromide (CTAB), a cationic surfactant, was added into the BPA sample solution in order to accumulate BPA through hydrophobic interaction between CTAB and BPA. The CNT-titania-Nafion/GC electrode gave a linear response ($r^2$ = 0.999) for BPA from $1.0{\times}10^{-8}$ M to $5.0{\times}10^{-6}$ M with a detection limit of $9.0{\times}10^{-10}$ M (S/N = 3). The modified electrode showed good selectivity against interfering species and also exhibited good reproducibility. The present electrochemical sensor based on the CNT-titania-Nafion/GC electrode was applied to the determination of BPA in food package samples.

Keywords

References

  1. Fan, J.; Guo, H.; Liu, G.; Peng, P. Anal. Chim. Acta 2007, 585, 134. https://doi.org/10.1016/j.aca.2006.12.026
  2. Hideyuki, Y.; Hajime, H.; Hitoshi, N.; Masatoshi, Y. Anal. Chim. Acta 2003, 488, 211. https://doi.org/10.1016/S0003-2670(03)00700-1
  3. Wen, Y.; Zhou, B.; Xu, Y.; Jin, S.; Feng, Y. J. Chromatogr. A 2006, 1133, 21. https://doi.org/10.1016/j.chroma.2006.08.049
  4. Liu, M.; Hashi, Y.; Pan, F.; Yao, J.; Song, G.; Lin, J. J. Chromatogr. A 2006, 1133, 142. https://doi.org/10.1016/j.chroma.2006.08.009
  5. Gatidou, G.; Thomaidis, N. S.; Stasinakis, A. S.; Lekkas, T. D. J. Chromatogr. A 2007, 1138, 32. https://doi.org/10.1016/j.chroma.2006.10.037
  6. Wang, X.; Zeng, H.; Wei, Y.; Lin, J.-M. Sens. Actuat. B 2006, 114, 565. https://doi.org/10.1016/j.snb.2005.06.020
  7. Wang, S.; Wei, X.; Du, L.; Zhuang, H. Luminescence 2005, 20, 46. https://doi.org/10.1002/bio.804
  8. Kim, A.; Li, C.; Jin, C.; Lee, K. W.; Lee, S.; Shon, K.; Park, N.; Kim, D.; Kang, S.; Shim, Y.; Park, J. Chemosphere 2007, 68, 1204. https://doi.org/10.1016/j.chemosphere.2007.01.079
  9. Huang, W. Bull. Korean Chem. Soc. 2005, 26, 1560. https://doi.org/10.5012/bkcs.2005.26.10.1560
  10. Yin, H.-S.; Zhou, Y.-L.; Ai, S.-Y. J. Electroanal. Chem. 2009, 626, 80. https://doi.org/10.1016/j.jelechem.2008.11.004
  11. Chauke, V.; Matemadombo, F.; Nyokong, T. J. Hazard. Mater. 2010, 178, 180. https://doi.org/10.1016/j.jhazmat.2010.01.061
  12. Yin, H.; Zhou, Y.; Ai, S.; Han, R.; Tang, T.; Zhu, L. Microchim. Acta 2010, 170, 99. https://doi.org/10.1007/s00604-010-0396-z
  13. Yin, H.; Cui, L.; Chen, Q.; Shi, W.; Ai, S.; Zhu, L.; Lu, L. Food Chem. 2011, 125, 1097. https://doi.org/10.1016/j.foodchem.2010.09.098
  14. Yin, H. S.; Cui, L.; Ai, S. Y.; Fan, H.; Zhu, L. S. Electrochim. Acta 2010, 55, 603. https://doi.org/10.1016/j.electacta.2009.09.020
  15. Li, J.; Kuang, D.; Feng, Y.; Zhang, F.; Liu, M. Microchim. Acta 2011, 172, 379. https://doi.org/10.1007/s00604-010-0512-0
  16. Fan, H.; Li, Y.; Wu, D.; Ma, H.; Mao, K.; Fan, D.; Du, B.; Li, H.; Wei, Q. Anal. Chim. Acta 2012, 711, 24. https://doi.org/10.1016/j.aca.2011.10.051
  17. Lee, W.-Y. In Smart Biosensor Technology; Knopf, G. K., Bassi, A. S., Eds.; CRC Press: 2006; p 335.
  18. Choi, H. N.; Cho, S.-H.; Lee, W.-Y. Anal. Chem. 2003, 75, 4250. https://doi.org/10.1021/ac0206014
  19. Choi, H. N.; Lee, J.-Y.; Lyu, Y.-K.; Lee, W.-Y. Anal. Chim. Acta 2006, 565, 48. https://doi.org/10.1016/j.aca.2006.01.106
  20. Park, J. A.; Kim, B. K.; Choi, H. N.; Lee, W.-Y. Bull. Korean Chem. Soc. 2010, 31, 3123. https://doi.org/10.5012/bkcs.2010.31.11.3123
  21. Lee, Y.-J.; Lyu, Y.-K.; Choi, H. N.; Lee, W.-Y. Electroanalysis 2007, 19, 1048. https://doi.org/10.1002/elan.200603820
  22. Choi, H. N.; Lyu, Y.-K.; Han, J. H.; Lee, W.-Y. Electroanalysis 2007, 19, 1524. https://doi.org/10.1002/elan.200703886
  23. Choi, H. N.; Han, J. H.; Park, J. A.; Lee, J. M.; Lee, W.-Y. Electroanlysis 2007, 19, 1757. https://doi.org/10.1002/elan.200703958
  24. Hu, S.; Wu, K.; Yi, H.; Cui, D. Anal. Chim. Acta 2002, 464, 209. https://doi.org/10.1016/S0003-2670(02)00496-8

Cited by

  1. A micellar sensitized kinetic method for quantification of low levels of bisphenol A in foodstuffs by spectrophotometry vol.9, pp.7, 2017, https://doi.org/10.1039/C6AY03064E
  2. Non‐Covalent Functionalization of Graphene with Bisphenol A for High‐Performance Supercapacitors vol.33, pp.2, 2013, https://doi.org/10.1002/cjoc.201400740
  3. An Electrochemical Sensor Based on Nitrogen‐doped Carbon Nanofiber for Bisphenol A Determination vol.28, pp.3, 2016, https://doi.org/10.1002/elan.201500287
  4. Electrochemical sensing and bio-sensing of bisphenol A and detection of its damage to DNA: A comprehensive review vol.15, pp.None, 2013, https://doi.org/10.1016/j.sbsr.2017.07.002