DOI QR코드

DOI QR Code

Electrochemical Determination of Dopamine Based on Carbon Nanotube-Sol-Gel Titania-Nafion Composite Film Modified Electrode

  • Park, Ji-Ae (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Kim, Byung-Kun (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Choi, Han-Nim (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University) ;
  • Lee, Won-Yong (Department of Chemistry and Center for Bioactive Molecular Hybrids, Yonsei University)
  • Received : 2010.08.09
  • Accepted : 2010.09.08
  • Published : 2010.11.20

Abstract

A highly sensitive electrochemical detection method for dopamine (DA) has been developed by relying on a multiwalled carbon nanotube (CNT)-sol-gel titania-Nafion composite film modified glassy carbon (GC) electrode. The CNT-titania-Nafion/GC electrode exhibited excellent electrocatalytic activity towards DA. Therefore, the CNT-titania-Nafion/GC electrode showed improved voltammetric and amperometric responses for DA compared to those obtained with both titania-Nafion/GC and Nafion/GC electrodes. The CNT-titania-Nafion/GC electrode gave a linear response ($R^2$ = 0.999) for DA from $0.5\;{\mu}M$ to 0.5 mM with a detection limit (S/N = 3) of $0.1\;{\mu}M$ and a good sensitivity of 150 mA/M while other electrodes such as CNT-Nafion/GC, titania-Nafion/GC, and a bare GC gave a sensitivity of 89, 39, and 36 mA/M, respectively. Besides, the CNT-titania-Nafion/GC electrode displayed very fast response time within 2 s. The modified electrode showed good selectivity against ascorbic acid. The modified electrode showed good stability and reproducibility. The CNT-titania-Nafion/GC electrode was applied to the determination of DA in urine and serum samples.

Keywords

References

  1. Damir, P.; Hirsch, E. C.; Graybiel, Y. A. M. Brain. 1999, 122, 1473.
  2. Domenech, A.; García, H.; Domenech-Carbo, M. T.; Galletero, M. S. Anal. Chem. 2002, 74, 562. https://doi.org/10.1021/ac010657i
  3. Zhao, Y.; Gao, Y.; Zhan, D.; Liu, H.; Zhao, Q.; Kou, Y.; Shao, Y.; Li, M.; Zhuang, Q.; Zhu, Z. Talanta 2005, 66, 51. https://doi.org/10.1016/j.talanta.2004.09.019
  4. Zhang, M.; Gong, K.; Zhang, H.; Mao, L. Biosens. Bioelectron. 2005, 20, 1270. https://doi.org/10.1016/j.bios.2004.04.018
  5. Lin, X.; Gong, J. Anal. Chim. Acta 2004, 507, 255. https://doi.org/10.1016/j.aca.2003.11.031
  6. Kawagoe, T. K.; Wightman, R. M. Talanta 1994, 31, 865.
  7. Xu, F.; Gao, M.; Wang, L.; Shi, G.; Zhang, W.; Jin, L.; Jin, J. Talanta 2001, 55, 329. https://doi.org/10.1016/S0039-9140(01)00432-5
  8. Fragoso, A.; Almirall, E.; Cao, R.; Echegoyen, L.; Gonzalez-Jonte, R. Chem. Commun. 2004, 2230.
  9. Jiang, X.; Lin, X. Analyst 2005, 130, 391. https://doi.org/10.1039/b412967a
  10. Britto, P.; Santhanam, K.; Ajayan, P. Bioelectrochem. Bioenerg. 1996, 41, 121. https://doi.org/10.1016/0302-4598(96)05078-7
  11. Zhang, L.; Jiang, X. J. Elecrtoanal. Chem. 2005, 583, 292. https://doi.org/10.1016/j.jelechem.2005.06.014
  12. Selvaraju, T.; Ramaraj, R. J. Elecrtoanal. Chem. 2005, 585, 290. https://doi.org/10.1016/j.jelechem.2005.09.005
  13. Thiagarajan, S.; Chen, S.-M. Talanta 2007, 74, 212. https://doi.org/10.1016/j.talanta.2007.05.049
  14. Wei, M.; Sun, L. G.; Xie, Z. Y.; Zhii, J. F.; Fujishima, A.; Einaga, Y.; Fu, D. G.; Wang, X. M.; Gu, Z. Z. Adv. Funct. Mater. 2008, 18, 1414. https://doi.org/10.1002/adfm.200701099
  15. Huang, J.; Liu, Y.; Hou, H.; You, T. Biosens. Bioelectron. 2008, 24, 632. https://doi.org/10.1016/j.bios.2008.06.011
  16. Chen, S.; Yang, W.; Chen, X. Electroanlysis 2010, 22, 908. https://doi.org/10.1002/elan.200900511
  17. Kim, Y.-R.; Bong, S.; Kang, Y. -J.; Yang, Y.; Mahajan, R. K.; Kim, J. S.; Kim, H. Biosens. Bioelectron. 2010, 25, 2366. https://doi.org/10.1016/j.bios.2010.02.031
  18. Zhu, H.; Wu, W.; Zhang, H.; Fan, L.; Yang, S. Electroanlysis 2009, 21, 2660. https://doi.org/10.1002/elan.200900282
  19. Dursun, Z.; Gelmez, B. Electroanlysis 2010, 22, 1106. https://doi.org/10.1002/elan.200900525
  20. Bai, Y.-C.; Zhang, W.-D. Electroanlysis 2010, 22, 237. https://doi.org/10.1002/elan.200900210
  21. Xu, G.-R.; Zhang, Y. P.; Tao, J. Z.; Kim, S.; Bae, Z.-U. Electroanlysis 2007, 19, 1085. https://doi.org/10.1002/elan.200603826
  22. Choi, H. N.; Cho, S.-H.; Lee, W.-Y. Anal. Chem. 2003, 75, 4250. https://doi.org/10.1021/ac0206014
  23. Choi, H. N.; Lee, J.-Y.; Lyu, Y.-K.; Lee, W.-Y. Anal. Chim. Acta 2006, 565, 48. https://doi.org/10.1016/j.aca.2006.01.106
  24. Lee, Y.-J.; Lyu, Y.-K.; Choi, H. N.; Lee, W.-Y. Electroanlysis 2007, 19, 1048. https://doi.org/10.1002/elan.200603820
  25. Choi, H. N.; Lyu, Y.-K.; Han, J. H.; Lee, W.-Y. Electroanlysis 2007, 19, 1524. https://doi.org/10.1002/elan.200703886
  26. Choi, H. N.; Han, J. H.; Park, J. A.; Lee, J. M.; Lee, W.-Y. Electroanlysis 2007, 19, 1757. https://doi.org/10.1002/elan.200703958
  27. Yoon, S. H.; Han, J. H.; Kim, B. K.; Choi, H. N.; Lee, W.-Y. Electroanlysis 2010, 22, 1349. https://doi.org/10.1002/elan.200900586

Cited by

  1. Electrochemical Determination of Dopamine Based on Self-Assembled Peptide Nanostructure vol.3, pp.11, 2011, https://doi.org/10.1021/am201101d
  2. Electrochemical sensor for Baicalein using a carbon paste electrode doped with carbon nanotubes vol.178, pp.1-2, 2012, https://doi.org/10.1007/s00604-012-0812-7
  3. Electrochemical Determination of Bisphenol A at Carbon Nanotube-Doped Titania-Nafion Composite Modified Electrode vol.34, pp.4, 2013, https://doi.org/10.5012/bkcs.2013.34.4.1065
  4. Immobilization of a Polyphenol Oxidase Extract from Terfezia leonis Tul. Desert Truffle in Multilayered Silica Films for Dopamine Biosensing vol.5, pp.4, 2013, https://doi.org/10.1007/s12633-013-9165-z
  5. Electrochemical Determination of Neurotransmitters at Crown Ether Modified Carbon Nanotube Composite: Application for Sub-Nano-Sensing of Serotonin in Human Serum pp.10400397, 2019, https://doi.org/10.1002/elan.201800065
  6. Fabrication of β‐Cyclodextrin/Glycine/Carbon Nanotubes Electrochemical Neurotransmitters Sensor – Application in Ultra‐sensitive Determination of DOPAC in Human Serum vol.30, pp.8, 2018, https://doi.org/10.1002/elan.201800046
  7. Nafion-Radical Hybrid Films on Carbon Nanotube Transistors for Monitoring Antipsychotic Drug Effects on Stimulated Dopamine Release vol.11, pp.10, 2010, https://doi.org/10.1021/acsami.8b18752