• Title/Summary/Keyword: Voltage-mode control

Search Result 888, Processing Time 0.03 seconds

A Novel Auxiliary Edge-Resonant Snubber-Assisted Soft Switching PWM High Frequency Inverter with Series Capacitor Compensated Resonant Load for Consumer Induction Heating

  • Ahmed Nabil A.;Iwai Toshiaki;Omori Hideki;Lee Hyun-Woo;Nakaoka Mutsuo
    • Journal of Power Electronics
    • /
    • v.6 no.2
    • /
    • pp.95-103
    • /
    • 2006
  • In this paper, a novel prototype of auxiliary switched capacitor assisted voltage source soft switching PWM Single-Ended Push Pull (SEPP) series capacitor compensated load resonant inverter with two auxiliary edge resonant lossless inductor snubbers is proposed and discussed for small scale consumer high-frequency induction heating (IH) appliances. The operation principle of this inverter is described by using switching mode equivalent circuits. The newly developed multi resonant high-frequency inverter using trench gate IGBTs can regulate its output AC power via constant frequency edge-resonant associated soft switching commutation by using an asymmetrical PWM control or duty cycle control scheme. The brand-new consumer IH products which use the newly proposed edge-resonant soft switching PWM-SEPP type series load resonant high-frequency inverters are evaluated using power regulation characteristics, actual efficiency vs. duty cycle and input power vs. actual efficiency characteristics. Their operating performance compared with some conventional soft switching high-frequency inverters for IH appliances is discussed on the basis of simulation and experimental results. The practical effectiveness of the newly proposed soft switching PWM SEPP series load resonant inverter is verified from an application point of view as being suitable for consumer high-frequency IH appliances.

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.

Optimized Operation of Dual-Active-Bridge DC-DC Converters in the Soft-Switching Area with Triple-Phase-Shift Control at Light Loads

  • Jiang, Li;Sun, Yao;Su, Mei;Wang, Hui;Dan, Hanbing
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.45-55
    • /
    • 2018
  • It is usually difficult for dual-active-bridge (DAB) dc-dc converters to operate efficiently at light loads. This paper presents an in-depth analysis of a DAB with triple-phase-shift (TPS) control under the light load condition to overcome this problem. A kind of operating mode which is suitable for light load operation is analyzed in this paper. First, an analysis of the zero-voltage-switching (ZVS) constraints for the DAB converter has been carried out and a reasonable dead-band setting method has been proposed. Secondly, the basic operating characteristics of the converter are analyzed. Third, under the condition of satisfying the ZVS constraints, both the reactive power and the root mean square (RMS) value of the current are simultaneously minimized and a particle swarm optimization (PSO) algorithm is employed to analyze and solve this optimization problem. Lastly, both simulations and experiments are carried out to verify the effectiveness of the proposed method. The experimental results show that the converter can effectively achieve ZVS and improved efficiency.

3-Phase Power Quality Disturbance Generator with Phase Jump Function (위상급변 기능을 갖는 3상 전력품질 외란발생기)

  • Lee, B.C.;Choi, S.H.;Paeng, S.H.;Park, S.D.;Choi, N.S.;Kim, I.D.;Chun, T.W.;Kim, H.G.;Nho, E.C.
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.5
    • /
    • pp.463-470
    • /
    • 2006
  • This paper deals with a new 3-phase power quality disturbance generator. The proposed generator can provide phase jump as well as voltage sag, swell, outage, unbalance, and over and under voltage. The operating principle of the generator is described in each mode of disturbance. The magnitude of the phase jump is analysed and it is found that the magnitude is the function of the turn-ratios of the transformers consisting the generator. The scheme has simple structure compared with the conventional one, and the major components of the proposed scheme are SCR thyristor and transformer, which guarantees high reliability and cost-effective implementation of the generator. Furthermore, high efficiency can be obtained because there is no PWM switching of the semiconductor devices, and it is easy to control the system. Simulations are carried out to confirm the operation in each disturbance mode, and experiments has been done with 5kVA power rating. The usefulness of the proposed scheme is verified through simulation and experimental results. It is expected that the scheme can be applied to the performance test of the custom power devices such as UPS, DVR, DSTATCOM, and SSTS with cost-effective system.

The Design of Single Phase PFC using a DSP (DSP를 이용한 단상 PFC의 설계)

  • Yang, Oh
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.6
    • /
    • pp.57-65
    • /
    • 2007
  • This paper presents the design of single phase PFC(Power Factor Correction) using a DSP(TMS320F2812). In order to realize the proposed boost PFC converter in average current mode control, the DSP requires the A/D sampling values for a line input voltage, a inductor current, and the output voltage of the converter. Because of a FET switching noise, these sampling values contain a high frequency noise and switching ripple. The solution of A/D sampling keeps away from the switching point. Because the PWM duty is changed from 5% to 95%, we can#t decide a fixed sampling time. In this paper, the three A/D converters of the DSP are started using the prediction algorithm for the FET ON/OFF time at every sampling cycle(40 KHz). Implemented A/D sampling algorithm with only one timer of the DSP is very simple and gives the autostart of these A/D converters. From the experimental result, it was shown that the power factor was about 0.99 at wide input voltage, and the output ripple voltage was smaller than 5 Vpp at 80 Vdc output. Finally the parameters and gains of PI controllers are controlled by serial communication with Windows Xp based PC. Also it was shown that the implemented PFC converter can achieve the feasibility and the usefulness.

Design of a PWM DC-DC Boost Converter IC for Mobile Phone Flash (휴대전화 플래시를 위한 PWM 전류모드 DC-DC converter 설계)

  • Jung, Jin-Woo;Heo, Yun-Seok;Park, Yong-Su;Kim, Nam-Tae;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.6
    • /
    • pp.2747-2753
    • /
    • 2011
  • In this paper, a PWM current-mode DC-DC boost converter for mobile phone flash application has been proposed. The converter which is operated with 5 Mhz high switching frequency is capable of reducing mounting area of passive devices such as inductor and capacitor, consequently is suitable for compact mobile phones. This boost converter consists of a power stage and a control block. Circuit elements of the power stage are inductor, output capacitor, MOS transistors and feedback resistors. Meanwhile, the control block consists of pulse width modulator, error amplifier, oscillator etc. Proposed boost converter has been designed and verified in a $0.5\;{\mu}m$ 1-poly 2-metal CMOS process technology. Simulation results show that the output voltage is 4.26 V in 3.7 V input voltage, output current 100 mA which is larger than 25 ~ 50 mA in conventional 500 Khz driven converter when the duty ratio is 0.15.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

A Study on the Implementation of Inverter Systems for Regenerated Power Control (회생전력 제어용 인버터 시스템의 구현에 관한 연구)

  • 金 敬 源;徐 永 泯;洪 淳 瓚
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.2
    • /
    • pp.205-213
    • /
    • 2002
  • This paper deals with the implementation of three-phase VSI systems which can control the power regenerated from DC bus line to AC supply. The overall system consists of the line-to-line voltage and line current sensors, an actual power calculator using d-q transformation method, a complex power controller with PI control scheme, a gating signal generator for modified q-conduction mode, a DPLL for frequency followup, and Power circuits. Control board is constructed by using a 32-bit DSP TMS32C32, two EFLDs , six ADCs, and a DAC. To verify the performance of the proposed system, we designed and constructed the propotype with the power rating of 5kVA at AC 220V. Experimental results show that the regenerated active power is well controlled to its command vague and the regenerated reactive power still remained at nearly zero through all operating modes.

Enhancement of ATP-induced Currents by Phospholipase D1 Overexpressed in PC12 Cells

  • Park, Jin-Bong;Kim, Young-Rae;Jeon, Byeong-Hwa;Park, Seung-Kiel;Oh, Sae-Ock;Kim, Young-Geun;Lee, Sang-Do;Kim, Kwang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.4
    • /
    • pp.223-229
    • /
    • 2003
  • Using phospholipase D1 (PLD1)-overexpressing PC12 (PLD1-PC12) cells, the regulatory roles of PLD1 on ATP-induced currents were investigated. In control and PLD1-PC12 cells, ATP increased PLD activity in an external $Ca^{2+}$ dependent manner. PLD activity stimulated by ATP was substantially larger in PLD1-PC12 cells than in control cells. In whole-cell voltage-clamp mode, ATP induced transient inward and outward currents. The outward currents inhibited by TEA or charybdotoxin were significantly larger in PLD1-PC12 cells than in control cells. The inward currents known as $Ca^{2+}$ permeable nonselective cation currents were also larger in PLD1-PC12 cells than in control cells. However, the difference between the two groups of cells disappeared in $Ca^{2+}$-free external solution, where ATP did not activate PLD. Finally, ATP-induced $^{45}Ca$ uptakes were also larger in PLD1-PC12 cells than in control cells. These results suggest that PLD enhances ATP-induced $Ca^{2+}$ influx via $Ca^{2+}$ permeable nonselective cation channels and increases subsequent $Ca^{2+}$-activated $K^+$ currents in PC12 cells.

Effects of Exposure Dose Reduction by Optimization of Automatic Exposure Control Factors in Digital Radiographic Examination of Paranasal Sinus (부비동 디지털 엑스선검사에서 자동노출제어 조절인자의 최적화를 통한 조사선량 감소 효과)

  • Jeong, Min-Gyu;Seoung, Youl-Hun
    • Journal of radiological science and technology
    • /
    • v.44 no.3
    • /
    • pp.173-181
    • /
    • 2021
  • The purpose of this study was to reduce dose while maintaining image quality during digital radiographic examination of paranasal sinus by using the automatic exposure control (AEC) system. The tube voltage was set as six stages that increased by about 10 kVp to 70 kVp, 81 kVp, 90 kVp, 102 kVp, 109 kVp and 117 kVp. And then the AEC system conditions were consisted of 9 setting environments, that change mode of the sensitivity (S200, S400, S800) and the density (+2.5, 0, -2.5). We measured automatically exposed tube current (mAs) under 54 conditions with combined these, and assessed SNR and PSNR through the acquired images. In addition, four radiologists performed a qualitative assessment of the acquired images for each combination on a five-point scale of the Likert. As a result, the lowest dose and the highest values of SNR and PSNR in images with a qualitative assessment more than 4 point were the AEC control factors of 90 kVp, S800, D2.5. We applied this condition to the clinical trial, it showed an effect of 83.1% reduction in exposure radiation dose (mR). Therefore, AEC system could be used as dose reduction technology if it understood and used related regulatory factors and physical characteristics.