• Title/Summary/Keyword: Voltage-fed dc/dc Converter

Search Result 100, Processing Time 0.036 seconds

Design of a Bidirectional AC-DC Converter using Charge Pump Power Factor Correction Circuit (전하펌프 역률개선 회로를 적용한 양방향성 AC-DC Converter 설계)

  • Ko, Seok-Cheol;Lim, Sung-Hun;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.227-230
    • /
    • 2001
  • This paper deals with a bidirectional ac-dc converter used in ups system application. We propose a Voltage-Source-Charge-Pump-Power-Factor-Correction(VS-CPPFC) ac-dc converters. First of all, we propose a charge pump power-factor-correction converter. Secondly, we derive and analyse a unity power factor condition. The proposed topology is based on a half-bridge for the primary and a current-fed push pull for the secondary side of a high frequency isolation transformer. The advantage of bidirectional flow of power achieved by using the same power components is that the circuit is simple and efficient. And the galvanically isolated topology is specially attractive in battery charge/discharge circuits in ups system. We design equivalent model for the steady-state circuit and analyse operation waveforms for each mode. We show that the proposed model can be applied to ups system by simulation processes.

  • PDF

Control of Motor Drives Fed by PFC Circuits without DC-Link Electrolytic Capacitors

  • Kim, Kwang-Man;Kim, Eung-Ho;Choi, Jong-Woo
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1067-1074
    • /
    • 2018
  • This paper presents a control method for variable-speed motor drives that do not use a DC-link electrolytic capacitor. The proposed circuit consists of a power factor correction converter for boosting the DC-link voltage, an inverter for driving the motor, and a small DC-link film capacitor. By employing a small DC-link capacitor, the proposed circuit that is small, and a low cost and weight are achieved. However, because the DC-link voltage varies periodically, the control of the circuit is more difficult than that of the conventional method. Using the proposed control method, an inverter can be controlled reliably even when the capacitance of the DC-link capacitor is very small. Experiments are performed using a 1.5-kW inverter with a $20-{\mu}F$ DC-link capacitor, and the experimental results are analyzed thoroughly.

A Modularized Charge Equalization Converter for a Hybrid Electric Vehicle Lithium-Ion Battery Stack

  • Park, Hong-Sun;Kim, Chong-Eun;Kim, Chol-Ho;Moon, Gun-Woo;Lee, Joong-Hui
    • Journal of Power Electronics
    • /
    • v.7 no.4
    • /
    • pp.343-352
    • /
    • 2007
  • This paper proposes a modularized charge equalization converter for hybrid electric vehicle (HEV) lithium-ion battery cells, in which the intra-module and the inter-module equalizer are Implemented. Considering the high voltage HEV battery pack, over approximately 300V, the proposed equalization circuit modularizes the entire $M^*N$ cells; in other words, M modules in the string and N cells in each module. With this modularization, low voltage stress on all the electronic devices, below roughly 64V, can be obtained. In the intra-module equalization, a current-fed DC/DC converter with cell selection switches is employed. By conducting these selection switches, concentrated charging of the specific under charged cells can be performed. On the other hand, the inter-module equalizer makes use of a voltage-fed DC/DC converter for bi-directional equalization. In the proposed circuit, these two converters can share the MOSFET switch so that low cost and small size can be achieved. In addition, the absence of any additional reset circuitry in the inter-module equalizer allows for further size reduction, concurrently conducting the multiple cell selection switches allows for shorter equalization time, and employing the optimal power rating design rule allows fur high power density to be obtained. Experimental results of an implemented prototype show that the proposed equalization scheme has the promised cell balancing performance for the 7Ah HEV lithium-ion battery string while maintaining low voltage stress, low cost, small size, and short equalization time.

Novel Active Clamp Current-fed Half Bridge Converter for Fuel Cell Generation System (연료전지 발전시스템을 위한 새로운 능동 클램프 전류원 하프 브리지 컨버터)

  • Kim J. T.;Kim S. H.;Lee T. W.;Jang S. J.;Kim S. S.;Won C. Y.
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.99-103
    • /
    • 2003
  • Recently, a fuel cell with low voltage and high current of electronic output characteristics is remarkable for new generation system. It needs both a dc-dc boost converter and do-ac inverter to be used in domestic power. Therefore, this paper presents do-dc boost converter with ZVS for fuel cell generation system This topology has several advantages, which are ZVS characteristics of all of main and auxiliary switches, reduction of reactor component size because of high frequency switching, and low rated voltage stress of the switches. In this paper, theoretical analysis, operation principle, and design procedures are presented. And simulation results from Pspice are presented to validate the theoretical analysis.

  • PDF

A Parallel Resonant inverter linked type DC-DC Converter with active-c1amp circuits (능동클램프회로를 갖는 병렬공전 인버터 링크형 DC-DC 컨버터)

  • 오경섭;남승식;김동희;김희대;선우영호
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.311-314
    • /
    • 2003
  • In this paper, proposed circuit proposes that Active-Clamp-Circuits basis of a current-fed inverter linked type high frequency resonant dc-dc converter of conventional. and the paper the most of characteristics of the reduced high voltage stress main switches with active clamp circuits and output current constant with the resonant part consists of L, C resonant tank circuit. Also, the capacitor (C$_1$, C$_2$) connected in switches are a common using by resonance capacitor and ZVS capacitor. and circuit analysis used state equation of each part modes. Also we conform a rightfulness theoretical analysis by comparing a parameters values and simulation values obtained from simulation using Power MOS-FET as switching devices.

  • PDF

Voltage-fed high frequency resonent inverter of instantaneous current phaser control method (순시 전류 phaser 제어방식의 전압형 고주파 공진 인버터)

  • LEE K.H.;RO C.K.;KIM D.H.;LEE B.S.;PARK J.K.;JUNG B.Y.
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.348-351
    • /
    • 2001
  • In this paper, voltage-fed high frequency resonant inverter of instantaneous current phaser control method used to DC voltage source separated is proposed. In the output control method, a novel circuit type of phase shift driving signal method with CVCF illustrated, also the operation principle of the proposed circuit is described in detail and its characteristics are presented as to normalized parameters. According to the each mode, in order to the circuit analysis and characteristic evaluation of the state equation are derives and present used to normalized parameter. In the future, this proposed inverter show that it can be practically used as power source system for the lighting equipment of discharge lamp, DC-DC converter etc.

  • PDF

A High-Efficiency High-Power Step-Up Converter with Low Ripple Content

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.708-712
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output (PI SO) dual inductor-fed push-pull converter for high-power step­up applications is proposed. This converter is operated at a constant duty cycle and employs an auxiliary circuit to control the output voltage with a phase-shift between the two modules. It features a voltage conversion characteristic which is linear to changes in the control input, and high step-up ratio with a greatly reduced switch turn-off stress resulting in a significant increase in the converter efficiency. It also shows a low ripple content and low root-mean-square (RMS) current in the output capacitor. The operational principle is analyzed and a comparative analysis with the conventional pulse-width-modulated (PWM) PISO dual inductor-fed push-pull converter is presented. A 50kHz, 800W, 350Vdc prototype with an input of 20-32Vdc has also been constructed to validate the proposed converter. The proposed converter compares favorably with the conventional counterpart and is considered well suited to high-power step-up applications.

  • PDF

A Single-Stage AC-DC Power Module Converter for Fast-Charger (급속충전기용 파워 모듈을 위한 단일단 AC-DC 컨버터)

  • LE, Tat-Thang;Choi, Sewan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.384-390
    • /
    • 2022
  • In this study, a single-stage, four-phase, interleaved, totem-pole AC-DC converter is proposed for a super-fast charger station that requires high power, a wide voltage range, and bidirectional operation capabilities and adopts various types of electric transport vehicles. The proposed topology is based on current-fed push-pull dual active bridge converter combined with the totem-pole operation. Owing to the four-phase interleaving effect, the bridge on the grid side can switch at 0.25, 0.5, and 0.75 to achieve a ripple-free grid current. The input filter can be removed theoretically. Switching methods for the duty of the secondary-side duty cycle are proposed, and they correspond to the primary duty cycle for reducing the circulating power and handling the total harmonic distortion. Therefore, the converter can operate under a wide voltage range. Experimental results from a 7.5 kW prototype are used to validate the proposed concept.

Boost Type ZVS-PWM Chopper-Fed DC-DC Power Converter with Load-Side Auxiliary Resonant Snubber and Its Performance Evaluations

  • Ogura, Koki;Chandhaket, Srawouth;Ahmed, Tarek;Nakaoka, Mutsuo
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.3B no.3
    • /
    • pp.147-154
    • /
    • 2003
  • This paper presents a high-frequency boost type ZVS-PWM chopper-fed DC-DC power converter with a single active auxiliary edge-resonant snubber at the load stage which can be designed for power conditioners such as solar photovoltaic generation, fuel cell generation, battery and super capacitor energy storages. Its principle operation in steady-state is described in addition to a prototype setup. The experimental results of boost type ZVS-PWM chopper proposed here, are evaluated and verified with a practical design model in terms of its switching voltage and current waveforms, the switching v-i trajectory and the temperature performance of IGBT module, the actual power conversion efficiency, and the EMI of radiated and conducted emissions, and then discussed and compared with the hard switching scheme from an experimental point of view. Finally, this paper proposes a practical method to suppress parasitic oscillation due to the active auxiliary resonant switch at ZCS turn-off mode transition with the aid of an additional lossless clamping diode loop, and can be reduced the EMI conducted emission.

Carrier Based Common Mode Voltage Reduction Techniques in Neutral Point Clamped Inverter Based AC-DC-AC Drive System

  • Ojha, Amit;Chaturvedi, Pradyumn;Mittal, Arvind;Jain, Shailendra
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.142-152
    • /
    • 2016
  • Common mode voltage (CMV) generation is a major problem in switching power converter fed induction motor drive systems. CMV is the zero sequence voltage generated due to the switching action of power converters. Even a small magnitude of CMV with a high rate of change may circulate large bearing currents which may damage a machine's bearings and shorten its life. There are several methods of controlling CMV. This paper presents 3-level sinusoidal pulse width modulation based techniques to control the magnitude and rate of change of CMV in multilevel AC-DC-AC drive systems. Simulation and experimental investigations have been presented to validate the performance of proposed technique to control CMV in 3-level neutral point clamped inverter based AC-DC-AC system.