• Title/Summary/Keyword: Voltage swells

Search Result 12, Processing Time 0.019 seconds

Estimation of Voltage Swell Frequency Caused by Asymmetrical Faults

  • Park, Chang-Hyun
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1376-1385
    • /
    • 2017
  • This paper proposes a method for estimating the expected frequency of voltage swells caused by asymmetrical faults in a power system. Although voltage swell is less common than voltage sag, repeated swells can have severe destructive impact on sensitive equipment. It is essential to understand system performance related to voltage swells for finding optimal countermeasures. An expected swell frequency at a sensitive load terminal can be estimated based on the concept of an area of vulnerability (AOV) and long-term system fault data. This paper describes an effective method for calculating an AOV to voltage swells. Interval estimation for an expected swell frequency is also presented for effective understanding of system performance. The proposed method provides long-term performance evaluation of the frequency and degree of voltage swell occurrences.

Dynamic Voltage Restorer (DVR) for 6.6[kV]/60[Hz] Power Distribution System Using Two Quasi Z-Source AC-AC Converters (두 개의 Quasi Z-소스 AC-AC 컨버터에 의한 6.6[kV]/60[Hz] 배전계통의 동적 전압 보상기(DVR))

  • Oum, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol;Choi, Joon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.199-208
    • /
    • 2012
  • This paper proposes a quasi Z-source DVR(Dynamic Voltage Restorer) system with a series connection of the output terminals, to compensate the voltage variations in the 6.6[kV]/60[Hz] power distribution system. The conventional DVR using one quasi Z-source AC-AC converter has the advantage which it can compensate the voltage variations without the need for the additional energy storage device such as a battery, but it is impossible to compensate for the 50[%] under voltage sags. To solve this problem, a DVR system using two quasi Z-source AC-AC converters with the series connection of the output terminals is proposed. By controlling the duty ratio D in the buck-boost mode, the proposed system can control the compensation voltage. For case verification of the proposed system, PSIM simulation is achieved. As a result, in case that the voltage sags-swells occur 10[%], 20[%], 60[%] in power distribution system, and, in case that the 50[%] under voltage sags-swells continuously occur, all case could compensate by the proposed system. Especially, the compensated voltage THD was examined under the condition of the 10[%]~50[%] voltage sags and the 20[${\Omega}$]~100[${\Omega}$] load changes. The compensated voltage THD was worse for the higher load resistances and more severe voltage sags. Finally, In case of the voltage swells compensation, the compensation factor has approached nearly 1 regardless of the load resistance changes, while the compensation factor of voltage sags was related to the load variations.

A Study of Pourer Quality Disturbance Compensation using dq Transformation (dq 좌표변환을 이용한 전력외란 보상 연구)

  • Lee, Kyo-Sung;Lee, Yong-Jae;Kim, Do-Hun;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.286-289
    • /
    • 2002
  • In this paper, we use the PI dual control using do transformation(dq stationary frame and dq synchronous rotating frame) for series voltage sag and swell compensation algorithm. Analysis, simulation results are presented for voltage sags and swells on a three-phase unbalanced voltage source.

  • PDF

The Concept and International Standards of Power Quality (전력 품질의 개념 정립과 국제 표준 비교)

  • Lim, Su-Saeng;Lee, Eun-Woong;Sohn, Hong-Kwan;Joh, Hyun-Kil;Jeong, Jong-Ho;Kim, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.174-177
    • /
    • 2001
  • The dependence of modern life upon the continuous supply of electrical energy makes system reliability and power quality topics of the utmost importance in the power systems. Power quality is the combination of voltage quality and current quality. But in this paper, voltage quality and harmonic distortion are focused. Transient phenomena and current quality are not included. Voltage quality is split into voltage sags. voltage swells, and short interruptions. These voltage variations are studied on their definitions, origins, the effect on electric equipment. Related industrial standards and guidelines are summarized. Harmonic voltage and current distortion are strongly linked. The concepts and contributions of harmonic distortions are studied. Typical symptoms of harmonic problems and a summary of the trends and guidelines are given.

  • PDF

Controller Design for Dynamic Voltage Restorers by use of PQR Power Theory I - Reference Wave Generation (PQR 순시전력이론에 의한 Dynamic Voltage Restorer의 제어기 설계 I -기준전압 파형의 발생)

  • Kim H.S.;Lee S.J.;Sul S.K.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.398-403
    • /
    • 2003
  • Dynamic Voltage Restorers (DVR)s are known as the best effective and economic means to compensate for voltage sags and swells [1]-[11]. This paper proposes a novel method to generate reference voltages synchronized with the grid whether the line voltages are distorted by a fault or not. The proposed reference wave generator (RWC) looks for the original wave forms from the corrupted line voltages and synthesizes the expected positive sequence reference waves for DVRs. There is no transient problem on the generated reference waves when the line voltages are distorted by the fault.

  • PDF

The Reference Wave Generator for Dynamic Voltage Restorers by use of PQR Instantaneous Power Theory (PQR 순시전력이론에 의한 동적전압보상기의 기준파 발생기)

  • 김효성;이상준;설승기
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.8 no.5
    • /
    • pp.435-441
    • /
    • 2003
  • Dynamic Voltage Restorers (DVR)s are known as the best effective and economic means to compensate for voltage sags and swells. This paper proposes a novel method to generate reference voltages synchronized with the grid whether the line voltages are distorted by a fault or not. The proposed reference wave generator (RWG) looks for the original wave forms from the corrupted line voltages and synthesizes the expected positive sequence reference waves for DVRs. There is no transient problem on the generated reference waves when the line voltages are distorted by the fault.

Design and Feedback Performance Analysis of the Inverter-side LC Filters Used in the DVR System (DVR시스템에 사용되는 인버터부의 LC필터 설계와 피드백 성능분석)

  • Park, Jong-Chan;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.2
    • /
    • pp.79-84
    • /
    • 2015
  • Voltage sags are considered the dominant disturbances affecting power quality. Dynamic voltage restorers(DVRs) are mainly used to protect sensitive loads from the electrical network voltage disturbances such as sags or swells and could be used to reduce harmonic distortion of ac voltages. The typical DVR topology essentially contains a PWM inverter with LC Filter, an injection transformer connected between the ac voltage line and the sensitive load, and a DC energy storage device. For injecting series voltage, the PWM inverter is used and the passive filter consist of inductor(L) and capacitor(C) for harmonics elimination of the inverter. However there are voltage pulsation responses by the characteristic of the LC passive filter that eliminate the harmonics of the PWM output waveform of the inverter. Therefore, this paper presented design and feedback performance of LC filter used in the DVRs. The voltage control by LC filter should be connected in the line side since this feedback method allows a relatively faster dynamic response, enabling the elimination of voltage notches or spikes in the beginning and in the end of sags and strong load voltage THD reduction. Illustrative examples are also included.

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

Modelling and Performance Analysis of UPQC with Digital Kalman Control Algorithm under Unbalanced Distorted Source Voltage conditions

  • Kumar, Venkateshv;Ramachandran, Rajeswari
    • Journal of Power Electronics
    • /
    • v.18 no.6
    • /
    • pp.1830-1843
    • /
    • 2018
  • In this paper, the generation of a reference current and voltage signal based on a Kalman filter is offered for a 3-phase 4wire UPQC (Unified Power Quality Conditioner). The performance of the UPQC is improved with source voltages that are distorted due to harmonic components. Despite harmonic and frequency variations, the Kalman filter is capable enough to determine the amplitude and the phase angle of load currents and source voltages. The calculation of the first state is sufficient to identify the fundamental components of the current, voltage and angle. Therefore, the Kalman state estimator is fast and simple. A Kalman based control strategy is proposed and implemented for a UPQC in a distribution system. The performance of the proposed control strategy is assessed for all possible source conditions with varying nonlinear and linear loads. The functioning of the proposed control algorithm with a UPQC is scrutinized and validated through simulations employing MATLAB/Simulink software. Using a FPGA SPATRAN 3A DSP board, the proposed algorithm is developed and implemented. A small-scale laboratory prototype is built to verify the simulation results. The stated control scheme for the UPQC reduces the following issues, voltage sags, voltage swells, harmonic distortions (voltage and current), unbalanced supply voltage and unbalanced power factor under dynamic and steady-state operating conditions.

Design and Implementation of Instantaneous Power Estimation Algorithm for Unified Power Conditioner

  • S., Sindhu;M.R., Sindhu;Nambiar, T.N.P.
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.815-826
    • /
    • 2019
  • This paper discusses a simple control approach for a Unified Power Conditioner (UPC) system to achieve power quality compensation at the point of common coupling in distribution systems. The proposed Instantaneous Power Estimation Algorithm (IPEA) for shunt and series active power filters uses a simple mathematical concept that reduces the complexity in the design of the controller. The performance of a UPC is verified with a system subjected to voltage distortions, sags/swells and unbalanced loads using MATLAB/SIMULINK. The simulation study shows that a UPC with the proposed control algorithm can effectively compensate for voltage and current harmonics, unbalance and reactive power. The control algorithm is experimentally implemented using dSPACE DS1104 and its effectiveness has been verified.