• Title/Summary/Keyword: Voltage harmonics

Search Result 833, Processing Time 0.023 seconds

Selective Harmonic Elimination for a Single-Phase 13-level TCHB Based Cascaded Multilevel Inverter Using FPGA

  • Halim, Wahidah Abd.;Rahim, Nasrudin Abd.;Azri, Maaspaliza
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.488-498
    • /
    • 2014
  • This paper presents an implementation of selective harmonic elimination (SHE) modulation for a single-phase 13-level transistor-clamped H-bridge (TCHB) based cascaded multilevel inverter. To determine the optimum switching angle of the SHE equations, the Newton-Raphson method is used in solving the transcendental equation describing the fundamental and harmonic components. The proposed SHE scheme used the relationship between the angles and a sinusoidal reference waveform based on voltage-angle equal criteria. The proposed SHE scheme is evaluated through simulation and experimental results. The digital modulator based-SHE scheme using a field-programmable gate array (FPGA) is described and has been implemented on an Altera DE2 board. The proposed SHE is efficient in eliminating the $3^{rd}$, $5^{th}$, $7^{th}$, $9^{th}$ and $11^{th}$ order harmonics, which validates the analytical results. From the results, it can be seen that the adopted 13-level inverter produces a higher quality with a better harmonic profile and sinusoidal shape of the stepped output waveform.

Development of High-speed Elevator Drive System using Permanent-magnet Synchronous Motor (영구 자석형 동기 전동기를 이용한 고속 엘리베이터 구동 시스템 개발)

  • Ryu Hyung-Min;Kim Sung-Jun;Sul Seung-Ki;Kwon Tae-Seok;Kim Ki-Su;Shim Young-Seok;Seok Ki-Riong
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.385-388
    • /
    • 2001
  • In this paper, the gearless traction machine drive system using a permanent-maget motor for high-speed elevators is addressed. This application of permanent-magnet motor to the elevator traction machine enables several improvements including higher efficiency, better ride comfort, smaller size and weight, and so on. PWM boost converter is also adopted so that DC-link voltage regulation, hi-directional power flow, and controllable power factor with reduced input current harmonics are possible. To increase reliability and performance, the control board, which can include the car and group controller as well as PWM converter and inverter controller, is designed based on TMS320VC33 DSP The simulator system for high-speed elevators has been developed so that the drive system of high-speed elevator can be tested without my limitation on ride distance and the load condition. Some experimental results are given to verify the effectiveness of the developed system.

  • PDF

A Study on the Integrated Simulation and Condition Monitoring Scheme for a PMSG-Based Variable Speed Grid-Connected Wind Turbine System under Fault Conditions (PMSG 적용 가변속 계통연계형 풍력발전 시스템의 통합 시뮬레이션 및 스위치 개방고장 진단기법 연구)

  • Kim, Kyeong-Hwa;Song, Hwa-Chang;Choi, Byoung-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.65-78
    • /
    • 2013
  • To analyze influences under open fault conditions in switching devices, an integrated simulation and condition monitoring scheme for a permanent magnet synchronous generator (PMSG) based variable speed grid-connected wind turbine system are presented. Among various faults in power electronics components, the open fault in switching devices may arise when the switches are destructed by an accidental over current, or a fuse for short protection is blown out. Under such a faulty condition, the grid-side inverter as well as the generator-side converter does not operate normally, producing an increase of current harmonics, and a reduction in output and efficiency. As an effective way for a condition monitoring of generation system by online basis without requiring any diagnostic apparatus, the estimation schemes for generated voltage, flux linkage, and stator resistance are proposed and the validity of the proposed scheme is proved through comparative simulations.

An Improved Operating Characteristics of Surface Permanent Magnetic Synchronous Generator for 5-Phase 5kW (5상 5kW 표면부착형 영구자석 동기발전기 특성개선)

  • Jung, Hyung-Woo;Kim, Min-Huei;Song, Hyun-Jik;Kim, Dong-Hee
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.9
    • /
    • pp.53-61
    • /
    • 2013
  • This paper propose a improved operating characteristics of the 5-phase 5kW within developed the surface permanent mount synchronous generator (SPMSG) in order to make a study of a polyphase ac motors keeping hold of more advantages. The developed manufacturing motor was necessary to do improvement of voltage regulation, efficiency, operating characteristics, and so on at the rated load. There are remake a redesigned and distributed stator winding connection without changing the frames of stator and rotor core in previous established generator by a repeat tests. There are shown a amplitude and waveform of the generated electromotive force, FFT analysis of harmonics within output voltages, and reviewing a experiment results in load of resistive and 5-phase induction motor by variable generator output frequency.

Isolated Multi-level Inverter Using 3-Phase Transformers (3상 변압기를 이용한 절연형 멀티레벨 인버터)

  • Kim, Tae-Jin;Park, Sung-Jun;Kim, Cheul-U;Song, Sung-Geun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.139-148
    • /
    • 2007
  • In this paper, we proposed the isolated multi-level inverter using 3-phase transformers. It makes possible to use a single DC power source due to employing low frequency transformers. In this inverter, the number of transformer could be reduced comparing with an exiting 3-phase multi-level inverter using single phase transformer. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching losses can be reduced. Finally, we made a prototype inverter to clarify the proposed electric circuit and reasonableness of control signal.

Single-Phase Bridgeless Zeta PFC Converter with Reduced Conduction Losses

  • Khan, Shakil Ahamed;Rahim, Nasrudin Abd.;Bakar, Ab Halim Abu;Kwang, Tan Chia
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.356-365
    • /
    • 2015
  • This paper presents a new single phase front-end ac-dc bridgeless power factor correction (PFC) rectifier topology. The proposed converter achieves a high efficiency over a wide range of input and output voltages, a high power factor, low line current harmonics and both step up and step down voltage conversions. This topology is based on a non-inverting buck-boost (Zeta) converter. In this approach, the input diode bridge is removed and a maximum of one diode conducts in a complete switching period. This reduces the conduction losses and the thermal stresses on the switches when compare to existing PFC topologies. Inherent power factor correction is achieved by operating the converter in the discontinuous conduction mode (DCM) which leads to a simplified control circuit. The characteristics of the proposed design, principles of operation, steady state operation analysis, and control structure are described in this paper. An experimental prototype has been built to demonstrate the feasibility of the new converter. Simulation and experimental results are provided to verify the improved power quality at the AC mains and the lower conduction losses of the converter.

A PWM Control Strategy for Low-speed Operation of Three-level NPC Inverter based on Bootstrap Gate Drive Circuit (부트스트랩 회로를 적용한 3-레벨 NPC 인버터의 저속 운전을 위한 PWM 스위칭 전략)

  • Jung, Jun-Hyung;Ku, Hyun-Keun;Im, Won-Sang;Kim, Wook;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.4
    • /
    • pp.376-382
    • /
    • 2014
  • This paper proposes the pulse width modulation (PWM) control strategy for low-speed operation in the three-level neutral-point-clamped (NPC) inverters based on the bootstrap gate drive circuit. As a purpose of the cost reduction, several papers have paid attention to the bootstrap circuit applied to the three-level NPC inverter. However, the bootstrap gate driver IC cannot generate the gate signal to the IGBT for low-speed operation, because the bootstrap capacitor voltage decreases under the threshold level. For low-speed operation, the dipolar and partial-dipolar modulations can be the effective solution. However, these modulations have drawbacks in terms of the switching loss and THD. Therefore, this paper proposes the PWM control strategy to operate the inverter at low-speed and to minimize the switching loss and harmonics. The experimental results are presented to verify the validity on the proposed method.

3-Phase Transformer Isolated Multi-level Inverter Using Common Arm (공통암을 이용한 3상 변압기 절연 멀티레벨 인버터)

  • Song, Sung-Geun;Park, Sung-Jun;Kim, Dong-Ok;Lim, Young-Cheol;Kim, Kwang-Heon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.149-156
    • /
    • 2007
  • The number of transformer and the size of transformer in inverter using 3-phase transformer could be reduced compare with a multi-level inverter using single phase transformer. but still the 3-phase transformer inverter needs many switches. In this study, we proposed the isolated multi-level inverter using 3-phase transformers and common arm, in this paper. Also, using phase angle control method with switching frequency equal to output fundamental frequency, harmonics component of output voltage and switching loss can be reduced. Finally, We tested multi-level inverter to clarify electric circuit md reasonableness through Matlab simulation and experiment by using prototype inverter.

Application of a C-Type Filter Based LCFL Output Filter to Shunt Active Power Filters

  • Liu, Cong;Dai, Ke;Duan, Kewei;Kang, Yong
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.1058-1069
    • /
    • 2013
  • This paper proposes and designs a new output filter called an LCFL filter for application to three phase three wire shunt active power filters (SAPF). This LCFL filter is derived from a traditional LCL filter by replacing its capacitor with a C-type filter, and then constructing an L-C-type Filter-L (LCFL) topology. The LCFL filter can provide better switching ripple attenuation capability than traditional passive damped LCL filters. The LC branch series resonant frequency of the LCFL filter is set at the switching frequency, which can bypass most of the switching harmonic current generated by a SAPF converter. As a result, the power losses in the damping resistor of the LCFL filter can be reduced when compared to traditional passive damped LCL filters. The principle and parameter design of the LCFL filter are presented in this paper, as well as a comparison to traditional passive damped LCL filters. Simulation and experimental results are presented to validate the theoretical analyses and effectiveness of the LCFL filter.

Modified Finite Control Set-Model Predictive Controller (MFCS-MPC) for quasi Z-Source Inverters based on a Current Observer

  • Bakeer, Abualkasim;Ismeil, Mohamed A.;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.610-620
    • /
    • 2017
  • The Finite Control Set-Model Predictive Controller (FCS-MPC) for quasi Z-Source Inverters (qZSIs) is designed to reduce the number of sensors by proposing a current observer for the inductor current. Unlike the traditional FCS-MPC algorithm, the proposed model removes the inductor current sensor and observes the inductor current value based on the deposited prior optimized state as well as the capacitor voltage during this state. The proposed observer has been validated versus a typical MPC. Then, a comparative study between the proposed Modified Finite Control Set-Model Predictive Controller (MFCS-MPC) and a linear PID controller is provided under the same operating conditions. This study demonstrates that the dynamic response of the control objectives by MFCS-MPC is faster than that of the PID. On the other hand, the PID controller has a lower Total Harmonic Distortion (THD) when compared to the MFCS-MPC at the same average switching. Experimental results validate both methods using a DSP F28335.