• 제목/요약/키워드: Voltage error correction

검색결과 55건 처리시간 0.021초

A Practical Voltage Error Correction Technique for Distribution System under Distribution Automation Environment

  • Aslam, Muhammad;Kim, Hyung-Seung;Choi, Myeon-Song;Lee, Seung-Jae
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권2호
    • /
    • pp.669-676
    • /
    • 2018
  • Transmission system has been well studied since long time and power system techniques of distribution system are more or less derived from transmission system. However, unlike transmission systems, many practical issues are encountered in the distribution system. Considerable amount of error is observed in voltage obtained from the Feeder Remote Terminal Units (FRTUs) measured by the pole mounted PTs along the distribution feeder. Load uncertainty is also an issue in distribution system. Further, penetration of Distributed Generators (DGs) creates voltage variations in the system. Hybrid radial/ loop distribution system also make it complicated to handle distribution system. How these constraints to be handled under Distribution Automation (DAS) environment in order to obtain error free voltage is described in this paper and therefore, a new approach of voltage error correction technique has been proposed. The proposed technique utilizes reliable data from substation and the FRTUs installed in DAS. The proposed technique adopts an iterative process for voltage error correction. It has been tested and proved accurate not only for conventional radial systems but also for loop distribution systems.

고전압 전기용량 브리지를 이용한 전압변성기의 비오차와 위상각 오차의 측정과 불확도 분석 (Measurement of Ratio Error/Phase Angle Error of Potential Transformer using High Voltage Capacitance Bridge and Uncertainty Analysis)

  • 권성원;이상화;김명수;정재갑
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제55권3호
    • /
    • pp.134-141
    • /
    • 2006
  • A potential transformer(PT) has ratio error and phase angle error. Precise measurement of the errors of PT can be achieved using high voltage capacitance bridge, high voltage capacitor and low voltage capacitor. The uncertainty for this method is evaluated and found to be $20{\times}10^{-6}$ in both ratio error and phase angle error. The values measured for PT using the method are well consistent with the those measured for same PT in NMIA(National Measurement Institute of Australia) within the corresponding uncertainty.

Soft Error Adaptable Deep Neural Networks

  • Ali, Muhammad Salman;Bae, Sung-Ho
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 추계학술대회
    • /
    • pp.241-243
    • /
    • 2020
  • The high computational complexity of deep learning algorithms has led to the development of specialized hardware architectures. However, soft errors (bit flip) may occur in these hardware systems due to voltage variation and high energy particles. Many error correction methods have been proposed to counter this problem. In this work, we analyze an error correction mechanism based on repetition codes and an activation function. We test this method by injecting errors into weight filters and define an ideal error rate range in which the proposed method complements the accuracy of the model in the presence of error.

  • PDF

넓은 범위의 비오차를 갖는 전압변성기를 이용한 계기용 변성기 비교 측정 장치의 비오차 직선성 평가기술 (Evaluation Technique for Linearity of Ratio Error of Instrument Transformer Comparator Using Voltage Transformer with Wide Range of Error Ratios)

  • 정재갑;권성원;김한준;박영태;김명수
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.66-70
    • /
    • 2005
  • Linearity of ratio error of instrument transformer comparator has been tested using wide ratio error voltage transformer(VT) with the ratio errors in the range of -3 % to 3 %. The technique is the method for evaluation of the linearity for instrument transformer comparator by comparing both the theoretical and experimental values in wide ratio error VT. The developed method has been successfully applied for calibration and correction in instrument transformer comparator belonging to industry.

표준저항기를 이용한 전압변성기 비교기의 비오차 평가 (Evaluation for Ratio Error of Voltage Transformer Comparator using Standard Resistors)

  • 한상길;김윤형;정재갑;한상옥
    • 전기학회논문지P
    • /
    • 제57권4호
    • /
    • pp.412-416
    • /
    • 2008
  • We have developed the calibration technique of the VT comparator using nonreactive standard resistors, which evaluates both accuracy and linearity of the VT comparator by comparing experimental values with theoretical values. The correction values of VT comparator obtained by using both our method and wide ratio error VT are consistent within the expanded uncertainty. Furthermore the specification for ratio error of VT comparator have been revaluated.

압전형 압력센서의 교정기법 자동화 (An automatic calibration technique for piezoelectric pressure transducers)

  • 홍성수;최주호;유준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1368-1371
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectric low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

압전형 압력센서의 교정기법 자동화 (An Automatic Calibration Technique for Piezoelectric Pressure Transducers)

  • 홍성수;최주호
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1996년도 추계학술대회 논문집
    • /
    • pp.1012-1016
    • /
    • 1996
  • This paper presents an automatic calibration technique for piezoelectic low pressure transducer, which is useful to measure a pressure within 500 psi. This system with automatic calibration function and error correction algorithm generates standard dynamic pressure for the calibration of sensor. With the compensation for the offset voltage and the pressure error, the accuracy and the usefulness of the proposed scheme is validated.

  • PDF

전압변성기 비교 측정 장치의 비오차 및 위상각 오차의 직선성 평가기술 (Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement Equipment)

  • 정재갑;박영태;권성원
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권9호
    • /
    • pp.470-474
    • /
    • 2004
  • Both ratio error and phase angle error in voltage transformer(VT) depend on values of burden of VT used. A method of evaluation for linearity of ratio error and phase angle error in VT measurement equipment have been developed using the standard resistance burdens, with negligible AC-DC resistance difference less than $10^-6$. These burden consists of five standard resistors, with nominal resistance of 100 $\Omega$, 1 k$\Omega$, 10 k$\Omega$, 100 k$\Omega$, and 1 M$\Omega$. The developed method has been applied in VT measurement equipment of industry and the validity of the developed method has been verified by showing the consistency of the result of linearity obtained using VT with wide ratio error.

동기화 기능을 가지는 오차보정회로를 이용한 6비트 800MS/s CMOS A/D 변환기 설계 (Design of a 6bit 800MS/s CMOS A/D Converter Using Synchronizable Error Correction Circuit)

  • 김원;선종국;윤광섭
    • 한국통신학회논문지
    • /
    • 제35권5A호
    • /
    • pp.504-512
    • /
    • 2010
  • 본 논문에서는 무선 USB 칩-셋 내 무선통신시스템단에 적용될 수 있는 6비트 800MS/s 플래쉬 A/D 변환기를 설계하였다. 기존의 A/D 변환기에서 서로 독립적으로 사용되던 오차보정회로단과 동기화단을 하나의 회로로 간소화 시켜서, 하드웨어에 대한 부담을 감소시켰다. 제안한 오차보정회로는 기존의 오차보정회로보다 MOS 트랜지스터의 수를 5개 감소시킬 수 있으며, 오차보정회로 한 개당 면적은 9% 정도 감소하게 된다. 설계된 A/D 변환기는 $0.18{\mu}m$ CMOS 1-poly 6-metal 공정으로 제작되었으며 측정 결과 입력 범위 0.8Vpp, 1.8V의 전원 전압에서 182mW의 전력 소모를 나타내었다. 800MS/s의 변환속도와 128.1MHz의 입력주파수에서 4.0비트의 ENOB을 나타내었다.

전기용량 부담을 이용한 전압변성기 비교 측정 시스템의 비오차 및 위상각 오차의 직선성 평가기술 (Evaluation Technique of Linearity of Ratio Error and Phase Angle Error of Voltage Transformer Comparison Measurement System Using Capacitor Burden)

  • 정재갑;김한준;권성원;김명수
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제54권6호
    • /
    • pp.274-278
    • /
    • 2005
  • Voltage transformer(VT) comparison measurement system is usually used for measurements of ratio error and phase angle error of VT made in industry. Both ratio error and phase angle error in VT are critically influenced by values of burden of VT used. External burden effects on both ratio error and phase angle error in VT are theoretically calculated. From the theoretical calculation, a method of evaluation for linearity of ratio error and phase angle error in VT measurement system have been developed using the standard capacitive burdens, with negligible dissipation factor less than 10$^{-4}$. These burden consists of five standard capacitors, with nominal capacitance of 1.1 $\mu$F, 1 $\mu$F, 0.1 $\mu$F, 0.01 $\mu$F, 0.001 $\mu$F. The developed method has been applied in VT measurement system of industry, showing in good consistency and linearity within 0.001 $\%$ between theoretical and measured values.