• 제목/요약/키워드: Voltage and frequency control

검색결과 1,507건 처리시간 0.039초

고정자전압제어 전류형 인버터에 의한 유도전동기 구동시스템의 안정도 해석 (Stability Analysis of Induction Motor Driven by Stator Voltage Controlled CSI)

  • Song, Joong-Ho;Yoon, Tae-Woong;Youn, Myung-Joong
    • 대한전기학회논문지
    • /
    • 제41권1호
    • /
    • pp.32-41
    • /
    • 1992
  • This paper presents a comprehensive study on the stability of several control schemes for the induction motor driven by current source inverters. A stator voltage controlled current source inverter drive system without a speed sensor is investigated in order to find appropriate control schemes, which are primarily based on direct or, alternatively, indirect frequency control scheme. It can be seen, especially that an introduction of the indirect frequency control method improves the inherent instability of the current source inverter drive system for the induction motor. The overall control systems with either voltage control loop or current and voltage control loops in addition to each frequency control scheme, are analyzed by utilizing the root locus method and simulated by computer to show the validity of this analysis.

Common Mode Voltage Cancellation in a Buck-Type Active Front-End Rectifier Topology

  • Aziz, Mohd Junaidi Abdul;Klumpner, Christian;Clare, Jon
    • Journal of Power Electronics
    • /
    • 제12권2호
    • /
    • pp.276-284
    • /
    • 2012
  • AC/AC power conversion is widely used to feed AC loads with a variable voltage and/or a variable frequency from a constant voltage constant frequency power grid or to connect critical loads to an unreliable power supply while delivering a very balanced and accurate sinusoidal voltage system of constant amplitude and frequency. The load specifications will clearly impose the requirements for the inverter stage of the power converter, while wider ranges of choices are available for the rectifier. This paper investigates the utilization of a buck-type current source rectifier as the active front-end stage of an AC/AC converter for applications that require an adjustable DC-link voltage as well as elimination of the low-frequency common mode voltage. The proposed solution is to utilize a combination of two or more zero current vectors in the Space Vector Modulation (SVM) technique for Current Sources Rectifiers (CSR).

직류 전동기의 저손실 구동을 위한 일정 주파수 제어형 영전압 스위칭 변환기의 구현 (Implement of Constant-Frequency-Controled Zero-Voltage-Switching Converter-fed DC Motor Drive for Low Power Loss)

  • 고문주;박진홍;한완옥;이성백
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 F
    • /
    • pp.2148-2150
    • /
    • 1998
  • This paper proposes a constant frequency controlled zero voltage switching method that can reduce switching losses caused by emf on inductance in DC motor. The zero voltage switching method is used more than a zero current switching method because of reducing switching losses by capacitance of depletion region of MOSFET. To simplify the controller circuit, we propose constant frequency controlled zero voltage switching method in the paper. The control method is more stable than a variable frequency control method because it can optimize bandwidth of a closed-loop and reactances. Therefore, we construct a constant frequency controlled zero voltage switching converter and improve zero switching losses in high switching frequency. In the process, we can control low-losses in full range on variable voltage and load. We simulate the proposed converter with P-SPICE and compare results obtained through the experiment.

  • PDF

3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감 (Neutral-Point Voltage Ripple Reduction of High Frequency Injection Sensorless Control of IPMSM Fed by a Three-Level Inverter)

  • 조대현;김석민;이교범
    • 전기전자학회논문지
    • /
    • 제24권3호
    • /
    • pp.867-876
    • /
    • 2020
  • 본 논문에서는 3레벨 인버터로 구동되는 IPMSM의 고주파 주입 센서리스 운전에서 중성점 전압 리플 저감을 제안한다. 고주파 전압 주입 기반의 센서리스 제어는 IPMSM의 저속 영역에서 일반적으로 사용하는 센서리스 제어 기법이다. 고주파 전압 주입을 이용한 IPMSM의 센서리스 제어 과정에서 중성점에서의 전압 리플이 증가하는 문제가 발생한다. 중성점에서의 큰 전압 리플은 출력 전류를 왜곡시킬 뿐만 아니라 직류단 커패시터의 수명을 단축시키므로 저감되어야 한다. 본 논문에서 제안하는 기법은 지령 전압에 적절한 값을 보상하여 중성점 전압 리플을 저감하며, 보상값은 지령 전압과 전류를 이용하여 간단히 계산한다. 제안하는 중성점 전압 리플 저감 기법의 타당성은 시뮬레이션을 통해 검증한다.

전류공유버스를 이용한 병렬 인버터 순시 제어기 설계 (Instantaneous Current Control for Parallel Inverter with a Current Share Bus)

  • 이창석;김시경
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 전력전자학술대회 논문집
    • /
    • pp.90-94
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employes active and reactive power control or frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employes a instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Futhermore, the proposed control scheme is verified through the simulation in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF

Dual Vector Control Strategy for a Three-Stage Hybrid Cascaded Multilevel Inverter

  • Kadir, Mohamad N. Abdul;Mekhilef, Saad;Ping, Hew Wooi
    • Journal of Power Electronics
    • /
    • 제10권2호
    • /
    • pp.155-164
    • /
    • 2010
  • This paper presents a voltage control algorithm for a hybrid multilevel inverter based on a staged-perception of the inverter voltage vector diagram. The algorithm is applied to control a three-stage eighteen-level hybrid inverter, which has been designed with a maximum number of symmetrical levels. The inverter has a two-level main stage built using a conventional six-switch inverter and medium- and low- voltage three-level stages constructed using cascaded H-bridge cells. The distinctive feature of the proposed algorithm is its ability to avoid the undesirable high switching frequency for high- and medium- voltage stages despite the fact that the inverter's dc sources voltages are selected to maximize the number of levels by state redundancy elimination. The high- and medium- voltage stages switching algorithms have been developed to assure fundamental switching frequency operation of the high voltage stage and not more than few times this frequency for the medium voltage stage. The low voltage stage is controlled using a SVPWM to achieve the reference voltage vector exactly and to set the order of the dominant harmonics. The inverter has been constructed and the control algorithm has been implemented. Test results show that the proposed algorithm achieves the desired features and all of the major hypotheses have been verified.

Investigation of Low-Frequency Characteristics of Four-Switch Three-Phase Inverter

  • Yuan, Qingwei;Cheng, Chong;Zhao, Rongxiang
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권4호
    • /
    • pp.1471-1483
    • /
    • 2017
  • The low-frequency characteristics of four-switch three-phase (FSTP) inverter are investigated in this paper. Firstly, a general space vector pulse width modulation (SVPWM) directly involved the neutral point voltage of DC-link is proposed, where no sector identifications and trigonometric function calculations are needed. Subsequently, to suppress the DC offset in the neutral point voltage, the relationship between the neutral point voltage and the ${\beta}-axis$ component of the load current is derived, and then a new neutral point voltage control scheme is proposed where no low pass filter is adopted. Finally, the relationship between the load power factor and the maximum linear modulation index of the FSTP inverter is revealed. Since the operational region for the FSTP inverter in low frequency is reduced by the enlarged amplitude of the neutral point voltage, a linear modulation range enlargement scheme is proposed. A permanent magnet synchronous motor with preset rotary speed serves as the low-frequency load of the FSTP inverter. Experimental results verify that the new neutral point voltage control scheme is effective in the deviation suppression of the neutral point voltage, and the proposed scheme is able to provide a larger linear operational region in low frequency.

고주파 결합 인덕터 직렬 공진형 ZCS-PFM 초퍼 제어 방식을 이용한 새로운 승압형 DC-DC 컨버터 (A Novel Boost DC-DC Converter using High Frequency Coupled Inductor Series Resonant ZCS-PFM Chopper Control Method)

  • 김홍신;허영환;문상필;박한석
    • 전기학회논문지P
    • /
    • 제66권2호
    • /
    • pp.63-68
    • /
    • 2017
  • This paper proposes a new non-isolated DC conversion circuit topology of the voltage source coupled inductor series resonant high-frequency PFM controlled boost chopper type DC-DC power converter using two in one IGBT power module, which can efficiently operate under a principle of zero current soft switching for wide output regulation voltage setting ranges and wide fluctuation of the input DC side voltage as well as the load variation ranges. Its steady state operating principle and the output voltage regulation characteristics in the open-loop-based output voltage control scheme without PI controller loop are described and evaluated from theoretical and experimented viewpoints. Finally, in this paper the computer-aided simulation steady-state analysis and the experimental results are presented in order to prove the effectiveness and the validity of voltage regulation characteristics of the proposed series resonant zero current soft switching boost chopper type DC-DC power converter circuit using IGBTs which is based on simple pulse frequency modulation strategy more than, 20kHz.

가변전압 가변주파수(VVVF) 교류 플라즈마 전원장치 (AC Plasma Power Supply with Variable Voltage and Variable Frequency)

  • 신완호;윤기복;정환명;최재호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.1205-1207
    • /
    • 2004
  • AC plasma power supply is used to control a ozone generator and a air pollution gas. AC plasma power supply is composed of power semiconductor switch devices and control board adapted SHE(Selected Harmonic Elimination) PWM method. AC plasma power supply with sinusoidal VVVF(variable voltage and variable frequency) is realized. Its output voltage range is from 0 [V] to 20[kV] and output frequency range is from 8[kHz] to 20[kHz]. Using proposed system, AC high voltage and high frequency discharge is tested in the DBD(dieletric barrier discharge) reactor, and the space distribution of a its non-thermal plasma is observed. In spite of the increasement of voltage and frequency, the proposed system have a stable operation characteristics. It is verified by the experimental results.

  • PDF

A Current Sharing Circuit for the Parallel Inverter

  • Lee, Chang-Seok;Kim, Si-Kyung
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.176-181
    • /
    • 1998
  • The parallel inverter is popularly used because of its fault-tolerance capability, high-current outputs at constant voltages and system modularity. The conventional parallel inverter usually employs active and reactive power control of frequency and voltage droop control. However, these approaches have the disadvantages that the response time of parallel inverter control is slow against load and system parameter variation to calculate active, reactive power, frequency and voltage. This paper describes a novel control scheme for power equalization in parallel-connected inverter. The proposed scheme has a fast power balance control response, a simplicity of implementation, and inherent peak current limiting capability since it employees an instantaneous current/voltage control with output voltage and current balance and output voltage regulation. A design procedure for the proposed parallel inverter controller is presented. Furthermore, the proposed control scheme is verified through the experiment in various cases such as the system parameter variation, the control parameter variation and the nonlinear load condition.

  • PDF