• Title/Summary/Keyword: Voltage Source Converters

Search Result 154, Processing Time 0.023 seconds

Performance Improvement of Model Predictive Control Using Control Error Compensation for Power Electronic Converters Based on the Lyapunov Function

  • Du, Guiping;Liu, Zhifei;Du, Fada;Li, Jiajian
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.983-990
    • /
    • 2017
  • This paper proposes a model predictive control based on the discrete Lyapunov function to improve the performance of power electronic converters. The proposed control technique, based on the finite control set model predictive control (FCS-MPC), defines a cost function for the control law which is determined under the Lyapunov stability theorem with a control error compensation. The steady state and dynamic performance of the proposed control strategy has been tested under a single phase AC/DC voltage source rectifier (S-VSR). Experimental results demonstrate that the proposed control strategy not only offers global stability and good robustness but also leads to a high quality sinusoidal current with a reasonably low total harmonic distortion (THD) and a fast dynamic response under linear loads.

A New Control Method of Series Active Power Filter with Harmonic Voltage Source (고조파 전압원에 대한 직렬형 능동전력필터의 새로운 제어법)

  • Ko, Soo-Hyun;Shin, Jae-Hwa;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1033-1036
    • /
    • 2002
  • This paper introduces a control method of series active power filter that compensate harmonic currents and eliminate a neutral line current in 3 phase 3 wire and 3 phase 4 wire power system with harmonic voltage source. These harmonic currents and neutral line current are caused by a nonlinear loads such as diode rectifiers and thyristor converters. Proposed methode extracts a voltage reference directly from performance function without phase transformation. Therefore, the control method is simpler than any other conventional methods. Experimental results for 3-phase 3-wire and 3-phase 4-wire series active power filter system were shown to verify the effectiveness of this control method.

  • PDF

A Study on DVR Control for Unbalanced Voltage Compensation

  • Jung Hong-Ju;Suh In-Young;Kim Byung-Seob;Kim Rae-Young;Choi See-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.803-807
    • /
    • 2001
  • This paper presents a new control scheme for a DVR (Dynamic Voltage Restorer) system consisting of series voltage source PWM converters. To control the negative sequence components of the source, it is necessary to detect the negative sequence components. Generally, a filtering process is used which has some undesirable effects. This paper suggests a new method for separating positive and negative sequences components. This control system is designed using differential controllers and digital filters. The positive and negative sequences are extracted and controlled individually. The performance of the presented controller and scheme are confirmed through simulation and actual experiment with a 2.5kVA prototype DVR system.

  • PDF

A New Soft Switching Step-Down/Up Converter with Inherent PFC Performance

  • Jabbari, Masoud;Farzanehfard, Hosein
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.835-844
    • /
    • 2009
  • In this paper a new buck-boost type DC-DC converter is presented. Its voltage gain is positive, all active elements operate under soft-switching condition independent of loading, magnetic isolation and self output short-circuit protection exist, and very fast dynamic operation is achievable by a simple bang-bang controller. This converter also exhibits appropriate PFC characteristics since its input current is inherently proportional to the source voltage. When the voltage source is off-line, it is sufficient to add an inductor after the rectifier, then near unity power factor is achievable. All essential guidelines to design the converter as a DC-DC and a PFC regulator are presented. Simulation and experimental results verify the developed theoretical analysis.

A Series Active Power Filter For Harmonic Currents And Reactive Power Compensation (고조파 전류와 무효전력보상을 위한 직렬형 능동전력필터)

  • 김진선;고수현;김영석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.221-229
    • /
    • 2003
  • This paper suggests a control algorithm of 3-phase 3-wire series active power filter. This suggested algorithm can compensate source harmonics and reactive power in 3-phase 3-wire power distribution systems. These harmonics are generated by nonlinear loads such as diode rectifiers and thyristor converters. This control algorithm extracts a compensation voltage reference from performance function without phase transformation. Therefore, this control algorithm is simpler than any other conventional control algorithms. 3-phase 3-wire series active power filters which have a harmonic voltage source and a harmonic current source are manufactured and experiments are carried out to verify the effectiveness of suggested control algorithm.

EMI Noise Source Reduction of Single-Ended Isolated Converters Using Secondary Resonance Technique

  • Chen, Zhangyong;Chen, Yong;Chen, Qiang;Jiang, Wei;Zhong, Rongqiang
    • Journal of Power Electronics
    • /
    • v.19 no.2
    • /
    • pp.403-412
    • /
    • 2019
  • Aiming at the problems of large dv/dt and di/dt in traditional single-ended converters and high electromagnetic interference (EMI) noise levels, a single-ended isolated converter using the secondary resonance technique is proposed in this paper. In the proposed converter, the voltage stress of the main power switch can be reduced and the voltage across the output diode is clamped to the output voltage when compared to the conventional flyback converter. In addition, the peak current stress through the main power switch can be decreased and zero current switching (ZCS) of the output diode can be achieved through the resonance technique. Moreover, the EMI noise coupling path and an equivalent model of the proposed converter topology are presented through the operational principle of the proposed converter. Analysis results indicate that the common mode (CM) EMI noise and the differential mode (DM) EMI noise of such a converter are deduced since the frequency spectra of the equivalent controlled voltage sources and controlled current source are decreased when compared with the traditional flyback converter. Furthermore, appropriate parameter selection of the resonant circuit network can increase the equivalent impedance in the EMI coupling path in the low frequency range, which further reduces the common mode interference. Finally, a simulation model and a 60W experimental prototype of the proposed converter are built and tested. Experimental results verify the theoretical analysis.

Low-Power Voltage Converter Using Energy Recycling Capacitor Array

  • Shah, Syed Asmat Ali;Ragheb, A.N.;Kim, HyungWon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.1
    • /
    • pp.62-71
    • /
    • 2017
  • This paper presents a low-power voltage converter based on a reconfigurable capacitor array. Its energy recycling capacitor array stores the energy during a charge stage and supplies the voltage during an energy recycle stage even after the power source is disconnected. The converter reconfigures the capacitor array step-wise to boost the lost voltage level during the energy recycle stage. Its energy saving is particularly effective when most of the energy remaining in the charge capacitors is wasted by the leakage current during a longer sleep period. Simulations have been conducted using a voltage source of 500 mV to supply a $V_{DD}$ of around 800 mV to a load circuit consisting of four 32-bit adders in a 65-nm CMOS process. Results demonstrate energy recycling efficiency of 85.86% and overall energy saving of 40.14% compared to a conventional converter, when the load circuit is shortly active followed by a long sleep period.

High efficiency photovoltaic DC-DC charger possible to use the buck and boost combination mode (승압 강압 콤비네이션 모드가 가능한 고효율 태양광 충전용 DC-DC 컨버터)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In the present industrial field, the demand for the development of the solar power source device and the charging device for the solar cell is gradually increasing. The solar charger is largely divided into a DC-DC converter that converts the voltage generated from the sunlight to a charging voltage, and a battery and a charger that are charged with an actual battery. The conventional charger topology is used either as a Buck converter or a Boost converter alone, which has the disadvantage that the battery can not always be charged to the desired maximum power as input and output conditions change. Although studies using a topology capable of boosting and stepping have been carried out, Buck-Boost converters or Sepic converters with relatively low efficiency have been used. In this paper, we propose a new Buck Boost combination power converter topology structure that can use Buck converter and Boost converter at the same time to improve inductor current ripple and power converter efficiency caused by wide voltage control range like solar charger.

A cooperative control study of Jeju ±80kV 60MW HVDC for voltage stability enhancement (제주 ±80kV 60MW HVDC 협조 제어 방안 연구)

  • Yoon, Jong-Su;Seo, Bo-Hyeok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.9
    • /
    • pp.1221-1225
    • /
    • 2012
  • This paper describes CSC(Current Sourced Converters)-based HVDC operational strategy for voltage stability enhancement in the power system. In case of CSC-based HVDC system, rectifier and inverter consume reactive power up to about 60% of converter rating. Therefore, CSC-based HVDC is basically not useful system for voltage stability even if AC filters and shunt capacitors are attached. But, If the particular power system condition is fulfilled, CSC-based HVDC also can be the rapid reactive power source for voltage stability enhancement using a cooperative control with converter and AC filters/Shunt Capacitors. In this paper, the cooperative control algorithm is presented and simulated to ${\pm}80kV$ 60MW HVDC system in Jeju island.

Coupled Inductor-Based Parallel Operation of a qZ-Source Full-Bridge DC-DC Converter

  • Lee, Hyeongmin;Kim, Heung-Geun;Cha, Honnyong;Chun, Tae-Won;Nho, Eui-Cheol
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • This study presents a novel transformer isolated parallel connected quasi Z-source (qZ-source) full-bridge DC-DC converter that uses a coupled inductor in both the qZ-source network and output filter inductor. Unlike traditional voltage-fed or current-fed converters, the proposed converter can be open- and short-circuited without damaging switching devices. Therefore, the desired buck and boost functions can be achieved and converter reliability can be significantly improved. All the bulky inductors in the qZ-source network and output filter can also be minimized with the proposed inductor structures. A 4 kW prototype DC-DC converter is built and tested to verify the performance of the proposed converter.