• Title/Summary/Keyword: Voltage Sag Compensation

Search Result 78, Processing Time 0.022 seconds

Single-Phase Series Type Quasi Z-Source Voltage Sag-Swell Compensator for Voltage Compensation of Entire Region (전 영역의 전압보상을 위한 단상 직렬형 Quasi Z-소스 전압 Sag-Swell 보상기)

  • Eom, Jun-Hyun;Jung, Young-Gook;Lim, Young-Cheol
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.322-332
    • /
    • 2013
  • Conventional single-phase series quasi Z-source voltage compensator can not compensate for voltage sag less than 50% that frequently occurs in the industrial field. In this study, single-phase series quasi Z-source voltage sag-swell compensator which can compensate the voltage variation of entire range is proposed. The proposed system is composed of two quasi Z-source AC-AC converters connected in series with output terminal stage. Voltage sag less than 50% could be compensated by the intersection switching control of the upper converter duty ratio and of the upper converter duty ratio. Also the compensation voltage and its flowchart for each compensation mode are presented for entire sag-swell region. To confirm the validity of the proposed system, a DSP(DSP28335) controlled experimental system was manufactured. As a result, the proposed system could compensate for the voltage sag/swell of 20% and 60%. Finally, voltage compensation factor and THD(Total Harmonic Distortion) according to voltage variation and load change were measured, and voltage quality shows a good results.

Development of On-Line Type Voltage Sag Compensation Systems by Using a Supercapacitor (수퍼커패시터를 이용한 상시가동형 순시전압강하 보상시스템의 개발)

  • Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.101-107
    • /
    • 2009
  • This paper deal with development of on-line type voltage sag compensation system using supercapacitor EDLC to solve the voltage sag problems which are considered to be dominant disturbances affecting the power quality. With the wide use of semiconductor devices in electrical equipment, modem-type loads are becoming increasingly sensitive to the voltage sags and the disturbances prove to be costly to industries. Supercapacitor EDLC is employed to compensate dynamically for the voltage sag of system with sensitive loads. This capacitor has higher energy density than the electrolytic capacitor. Also, this capacitor has a lot of advantage such as no maintenance, longer life cycle and faster charge-discharge time than the battery system. Therefore, in this paper, the energy design scheme of supercapacitor and the configuration technique of on-line type voltage sag compensation systems are newly introduced. According to the results of experimental of prototype 5[kVA] system, it is verified that the developed system has effectiveness of voltage sag compensation by using a supercapacitor EDLC.

Series Voltage Compensation Systems for Voltage Sag by Using an Environmentally Friendly Ultra-capacitor (친환경 Ultra-capacitor에 의한 순시전압강하의 직렬전압보상 시스템)

  • Shon, Jin-Geun;Jeon, Hee-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.4
    • /
    • pp.763-769
    • /
    • 2009
  • A series voltage compensation(SVC) system is a power-electronics controller that can protect sensitive loads from disturbance in the supply system. Especially, voltage sags are considered the dominant disturbances affecting the power quality. This paper dealt with a system of off-line type voltage sag compensation by using a bi-directional DC/DC converter of environmentally friendly ultra-capacitor. This capacitor is attached to the DC link of SVC through the high-efficiency DC/DC converter in order to compensate the DC link voltage drop during short-term power interruption as voltage sags. Therefore, in this paper, a DC/DC converter to control high-efficiency energy of ultra-capacitor and voltage sag detection algorithm of off-line type SVC systems are newly introduced. According to the results of experimental of prototype system, it is verified that the proposed system has effectiveness of voltage sag compensation using an ultra-capacitor.

Design of a Series Voltage Sag Compensation System in Transmission Line

  • Park, Hyen-Young;Kim, Yang-Mo;Lee, Gyo-Sung;Oh, Se-Ho;Park, Jung-Gyun
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.2B no.4
    • /
    • pp.191-200
    • /
    • 2002
  • When power consumption increases, power supply must be efficient and reliable for good power quality. The studies on compensation system of power quality are processing actively. Voltage sag among of factors for power quality is generally PI dual control that voltage sag compensation is used. But this control is no more available since of 120[KHz] ripple rejection. So we proposed the control algorithm using PID control in 3-phase unbalanced power system and the series voltage compensator, when voltage sag occurs.

Stand-Alone Type Single-Phase Fuel Cells Micro-Source with ac Voltage Compensation Capability (교류전압 보상 기능을 갖는 독립형 단상 연료전지 마이크로 소스)

  • Jung, Young-Gook
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.35-41
    • /
    • 2009
  • This paper proposes a stand alone type single-phase fuel cells micro-source with a voltage sag compensator for compensating the ac output voltage variations (sag or swell) of micro-source. The proposed micro-source is consist of a PEM(polymer electrolyte membrane) fuel cells simulator, a full bridge de converter, a 60Hz PWM(pulse width modulation) VSI(voltage source inverter), and a voltage sag compensator. Voltage sag compensator is similar to the configuration of hybrid series active power filter, and it is directly connected to micro-source through the injection transformer. Compensation algorithm of a voltage sag compensator adopts a single phase p-q theory. Effectiveness of the proposed the system is verified by the PSIM(power electronics simulation tool) simulation in the steady state and transient state which the proposed system is able to simultaneously compensate the harmonic current and source voltage sag or swell.

A Study on Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (Voltage Sag 보상을 위한 승압형 단상 인버터 시스템에 관한 연구)

  • Seo, Young-Min;Lee, Seung-Yong;Hong, Soon-Chan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.11
    • /
    • pp.50-57
    • /
    • 2011
  • This paper proposes a boost type single-phase inverter system to compensate the voltage sag appeared on source side. The proposed system is composed of a boost converter, a PWM inverter, and a bypass diode. If the voltage sag has appeared in input voltage, the boost converter would be operated to compensate it in the proposed system. The boost converter would not be operated when the magnitude of input voltage is more than 0.9 pu. The output voltage is kept constant by a direct-quadrature frame controller in the inverter. A 300 W class boost type inverter system was simulated, and the validity of the proposed system was verified by carrying out experiments.

A PWM Buck AC-AC Converter with Instantaneous Compensation for Voltage Sag and Surge (전압 Sag와 Surge에 대한 순시보상 기능을 갖는 PWM Buck AC-AC 컨버터)

  • Choi Nam-Sup
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.197-200
    • /
    • 2001
  • This paper presents a PWM buck AC-AC converter with instantaneous compensation for input voltage sag and surge. The presented converter use commercial IGBT modules and its output voltage is regulated so as to remain constant AC output voltage. The feedforward control technique is also proposed to establish instantaneous duty level change whereby stable output voltage will be retained. This paper show the characteristics and control algorithm of the converter through various PSPICE simulations.

  • PDF

An Improvement in Synchronously Rotating Reference Frame-Based Voltage Sag Detection under Distorted Grid Voltages

  • Sillapawicharn, Yutthachai;Kumsuwan, Yuttana
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1283-1295
    • /
    • 2013
  • This study proposed an improvement in synchronously rotating reference frame-based voltage sag detection under distorted grid voltages. In the past, the conventional synchronously rotating reference frame (CSRRF)-based voltage sag detection was generally used in the voltage sag compensation applications. Its disadvantage is a long delay of detection time. The modified synchronously rotating reference frame (MSRRF)-based voltage sag detection is able to detect the voltage sag with only a short delay in detection time. However, its operation under distorted grid voltage conditions is unavailable. This paper proposed the improvement of modified synchronously rotating reference frame (IMSRRF)-based voltage sag detection for use in distorted grid voltages with very fast operation of voltage sag detection. The operation of the proposed voltage sag detections is investigated via simulations and experimentations to verify the performance of the IMSRRF-based voltage sag detection.

Design and Implementation of Low Cost Boost Type Single-Phase Inverter System for Compensation of Voltage Sag (순간전압강하 보상을 위한 저가의 승압형 단상 인버터 시스템의 설계 및 구현)

  • Lee, Seung-Yong;Hong, Soon-Chan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.85-92
    • /
    • 2012
  • In this paper, a 300[W] class boost type single-phase inverter system which can compensate voltage sag on source side is designed and implemented. This system is a two-stage conversion system composed of a boost converter and a PWM inverter. If the voltage sag has appeared at the point of common coupling, the boost converter would be operated to compensate it. The boost converter and the inverter were constructed on single smart power module(SPM) to implement low cost system. The system is designed for that the THD of output voltage is below 5[%]. Finally, the validity of the design for the inverter system is verified by both simulations and experiments.

Three-Phase Z-Source Dynamic Voltage Restorer with a Fuel Cells Source (연료전지 전원을 갖는 3상 Z-소스 동적 전압 보상기)

  • Jung, Young-Gook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.10
    • /
    • pp.41-48
    • /
    • 2008
  • This paper proposes a three-phase Z-source dynamic voltage restorer (Z-DVR) to mitigate the voltage sag for the critical loads. The proposed system is composed of passive filter and Z-source topology inverter. As an ESS(Energy Storage System) of the proposed system is employed the Proton Exchange Membrane Fuel Cells (PEMFC). To calculate and control the harmonics and compensation voltage, $i_{d}-i_{q}$ theory in dq rotating reference frame and PI controller are used. In case that three-phase voltage sags occurred, a PSIM simulation was done for the performance comparison of the conventional method employed battery stacks and proposed method. As a result, considering the voltage compensation performance, each method was nearly similar. Also, the compensation performance and the %THD(%Total Harmonic Distortion) result under the various source voltage conditions (sag or swell) were presented and discussed to show the performance of the proposed system.