• Title/Summary/Keyword: Voltage Regulation

Search Result 690, Processing Time 0.029 seconds

Effects of Argon-plasma Jet on the Cytoskeleton of Fibroblasts: Implications of a New Approach for Cancer Therapy (Fibroblasts 세포주의 세포골격에서 아르곤 플라즈마의 효과: Cancer Therapy의 새로운 접근방법)

  • Han, Ji-Hye;Nam, Min-Kyung;Kim, Yong-Hee;Park, Dae-Wook;Choi, Eun Ha;Rhim, Hyangshuk
    • KSBB Journal
    • /
    • v.27 no.5
    • /
    • pp.308-312
    • /
    • 2012
  • Argon-plasma jet (Ar-PJ) is generated by ionizing Ar gas, and the resulting Ar-PJ consists of a mixture of neutral particles, positive ions, negative electrons, and various reactive species. Although Ar-PJ has been used in various biomedical applications, little is known about the biological effects on cells located near the plasma-exposed region. Here, we investigated the effects of the Ar-PJ on actin cytoskeleton of mouse embryonic fibroblasts (MEFs) in response to indirect as well as direct exposure to Ar-PJ. This Ar-PJ was generated at 500 mL/min of flow rate and 100 V electric power by our device mainly consisting of electrodes, dielectrics, and a high-voltage power supply. Because actin cytoskeleton is the key cellular machinery involved in cellular movement and is implicated in regulation of cancer metastasis and thus resulting in a highly desirable cancer therapeutic target, we examined the actin filament architectures in Ar-PJ-treated MEFs by staining with an actin-specific phalloidin labeled with fluorescent dye. Interestingly, the Ar-PJ treatment causes destabilization of actin filament architectures in the regions indirectly exposed to Ar-PJ, but no differences in MEFs treated with Ar gas alone and in untreated cell control, indicating that this phenomenon is a specific cellular response against Ar-PJ in the live cells, which are indirectly exposed to Ar-PJ. Collectively, our study raises the possibility that Ar-PJ may have potential as anti-cancer drug effect through direct destabilization of the actin cytoskeleton.

5-Hydroxytryptamine Generates Tonic Inward Currents on Pacemaker Activity of Interstitial Cells of Cajal from Mouse Small Intestine

  • Shahi, Pawan Kumar;Choi, Seok;Zuo, Dong Chuan;Yeum, Cheol-Ho;Yoon, Pyung-Jin;Lee, Jun;Kim, Young-Dae;Park, Chan-Guk;Kim, Man-Yoo;Shin, Hye-Rang;Oh, Hyun-Jung;Jun, Jae-Yeoul
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2011
  • In this study we determined whether or not 5-hydroxytryptamine (5-HT) has an effect on the pacemaker activities of interstitial cells of Cajal (ICC) from the mouse small intestine. The actions of 5-HT on pacemaker activities were investigated using a whole-cell patch-clamp technique, intracellular $Ca^{2+}$ ($[Ca^{2+}]_i$) analysis, and RT-PCR in ICC. Exogenously-treated 5-HT showed tonic inward currents on pacemaker currents in ICC under the voltage-clamp mode in a dose-dependent manner. Based on RT-PCR results, we found the existence of 5-$HT_{2B,\;3,\;4,\;and\;7}$ receptors in ICC. However, SDZ 205557 (a 5-$HT_4$ receptor antagonist), SB 269970 (a 5-$HT_7$ receptor antagonist), 3-tropanylindole - 3 - carboxylate methiodide (3-TCM; a 5-$HT_3$ antagonist) blocked the 5-HT-induced action on pacemaker activity, but not SB 204741 (a 5-$HT_{2B}$ receptor antagonist). Based on $[Ca^{2+}]_i$ analysis, we found that 5-HT increased the intensity of $[Ca^{2+}]_i$. The treatment of PD 98059 or JNK II inhibitor blocked the 5-HT-induced action on pacemaker activity of ICC, but not SB 203580. In summary, these results suggest that 5-HT can modulate pacemaker activity through 5-$HT_{3,\;4,\;and\;7}$ receptors via $[Ca^{2+}]_i$ mobilization and regulation of mitogen-activated protein kinases.

Dual regulatory effects of PI(4,5)P2 on TREK-2 K+ channel through antagonizing interaction between the alkaline residues (K330 and R355-357) in the cytosolic C-terminal helix

  • Kim, Sung Eun;Kim, Myoung-Hwan;Woo, Joohan;Kim, Sung Joon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.6
    • /
    • pp.555-561
    • /
    • 2020
  • TWIK-related two-pore domain K+ channel-2 (TREK-2) has voltage-independent activity and shows additional activation by acidic intracellular pH (pHi) via neutralizing the E332 in the cytoplasmic C terminal (Ct). We reported opposite regulations of TREK-2 by phosphatidylinositol 4,5-bisphosphate (PIP2) via the alkaline K330 and triple Arg residues (R355-357); inhibition and activation, respectively. The G334 between them appeared critical because its mutation (G334A) endowed hTREK-2 with tonic activity, similar to the mutation of the inhibitory K330 (K330A). To further elucidate the role of putative bent conformation at G334, we compared the dual mutation forms, K330A/G334A and G334A/R355-7A, showing higher and lower basal activity, respectively. The results suggested that the tonic activity of G334A owes to a dominant influence from R355-7. Since there are additional triple Arg residues (R377-9) distal to R355-7, we also examined the triple mutant (G334A/R355-7A/R377-9A) that showed tonic inhibition same with G334A/R355-7A. Despite the state of tonic inhibition, the activation by acidic pHi was preserved in both G334A/R355-7A and G334A/R355-7A/R377-9A, similar to the R355-7A. Also, the inhibitory effect of ATP could be commonly demonstrated under the activation by acidic pHi in R355-7A, G334A/R355-7A, and G334A/R355-7A/R377-9A. These results suggest that the putative bent conformation at G334 is important to set the tug-of-war between K330 and R355-7 in the PIP2-dependent regulation of TREK-2.

Deign of Small-Area Differential Paired eFuse OTP Memory for Power ICs (Power IC용 저면적 Differential Paired eFuse OTP 메모리 설계)

  • Park, Heon;Lee, Seung-Hoon;Jin, Kyo-Hong;Ha, Pan-Bong;Kim, Young-Hee
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.8 no.2
    • /
    • pp.107-115
    • /
    • 2015
  • In this paper, a small-area 32-bit differential paired eFuse OTP memory for power ICs is designed. In case of smaller number of rows than that of columns for the OTP memory cell array, a scheme for the cell array reducing the number of SL driver circuits requiring their larger layout areas by routing the SL (source line) lines supplying programming currents for eFuse links in the row direction instead of the column direction as well as a core circuit is proposed. In addition, to solve a failure of being blown for non-blown eFuse links by the electro-migration phenomenon, a regulated voltage of V2V ($=2V{\pm}0.2V$) is used to a RWL (read word line) driver circuit and a BL (bit line) pull-up driver circuit. The layout size of the designed 32-bit eFuse OTP memory is $228.525{\mu}m{\times}105.435{\mu}m$, which is confirmed to be 20.7% smaller than that of the counterpart using the conventional cell array routing, namely $197.485{\mu}m{\times}153.715{\mu}m$.

A Study on the Performance Analysis of AIoT High-Efficiency Streetlamp for Carbon Emissions (탄소배출권용 AIoT 고효율 가로등 성능분석 연구)

  • Seung-Ho Park;Seong-Uk Shin;Kyung-Sunl Yoo
    • Journal of Advanced Technology Convergence
    • /
    • v.2 no.4
    • /
    • pp.13-19
    • /
    • 2023
  • Following the signing of the Paris Agreement on Climate Change (UNFCCC, 2015), the world is expanding greenhouse gas reduction activities through comprehensive participation that includes not only developed countries but also developing countries. Major countries around the world are placing high expectations on the effectiveness of total carbon emissions regulation through the carbon emissions market. However, in order to obtain carbon credits, third-party verification is required based on quantitative carbon reduction data. Accordingly, in this paper, we developed an AIoT high-efficiency street light for carbon emissions and conducted a performance analysis study to measure the luminous efficiency of the lighting fixture. To obtain carbon emissions rights, we used high-efficiency LED PKG, developed our own high-voltage PFC, and developed high-efficiency lighting fixtures capable of communication. For communication, the 2.4GHz LoRa method was adopted between the lighting fixture and the gateway. Lens design was conducted through simulation of Korea Expressway Corporation's standard streetlight types A, B, and C. The performance of the streetlight was verified as being more efficient than other existing products through the measurement of luminous efficiency by an accredited rating agency, and it is expected that carbon emissions rights will be obtained by reducing electrical energy through this.

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation

  • Lee, Byung-Hwan;Choi, Sun-Hye;Pyo, Mi Kyung;Shin, Tae-Joon;Hwang, Sung-Hee;Kim, Bo-Ra;Lee, Sang-MoK;Lee, Jun-Ho;Lee, Joon-Hee;Lee, Hui Sun;Choe, Han;Han, Kyou-Hoon;Kim, Hyoung-Chun;Rhim, Hyewhon;Yong, Joon-Hwan;Nah, Seung-Yeol
    • Molecules and Cells
    • /
    • v.27 no.5
    • /
    • pp.591-599
    • /
    • 2009
  • Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.

Characterization of the Stretch-Activated Channel in the Hamster Oocyte (햄스터난자에서 신전에 의해 활성화되는 통로의 성상)

  • Kim, Y.-M.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.89-99
    • /
    • 2004
  • Stretch-activated channels (SACs) responds to membrane stress with changes in open probability (Po). They play essential roles in regulation of cell volume and differentiation, vascular tone, and in hormonal secretion. SACs highly present in Xenopus oocytes and Ascidian oocytes are suggested to be involved in the regulation of pH and fluid transport to balance the osmotic pressure, but remain unclear in mammanlian oocytes. This study was investigated to find the presence of SACs in hamster oocytes and to examine their electrophysiological properties. To infer a role of SAC in relation to the development of early stage, we followed up to the stage of two-cell zygote with patch clamp techniques. Single channels were elicited by negative pressure (lower than ­15 cm$H_2O$). Interestingly, SACs were dependent on permeable cations such as $Na^+$ or $K^+$. As permeable cation removed from both sides across the membrane, SAC activity completely disappeared. When permeable cations present only in intracellular compartment, outward currents appeared at positive potentials. In contrast to this, inward currents occurred only at the negative voltage when permeable cation absent in cell interior. These result suggests that SAC carry cations through the nonselective cation channel (NSC channel). Taken together, we found that stretch activated channels present in hamster oocyte and the channel may carry cations through NSC channels. This stretch activated-NSC channels may play physiological role(s) in oocyte growth, maturation, fertilization and embryogenesis in fertilized oocytes to two-cell zygotes of hamster.

Improvement of Energy Density in Supercapacitor by Ion Doping Control for Energy Storage System (에너지 저장장치용 슈퍼커패시터 이온 도핑 제어를 통한 에너지 밀도 향상 연구)

  • Park, Byung-jun;Yoo, SeonMi;Yang, SeongEun;Han, SangChul;No, TaeMoo;Lee, Young Hee;Han, YoungHee
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.3
    • /
    • pp.209-213
    • /
    • 2019
  • Recently, demand for high energy density and long cycling stability of energy storage system has increased for application using with frequency regulation (F/R) in power grid. Supercapacitor have long lifetime and high charge and discharge rate, it is very adaptable to apply a frequency regulation in power grid. Supercapacitor can complement batteries to reduce the size and installation of batteries. Because their utilization in a system can potentially eliminate the need for short-term frequent replacement as required by batteries, hence, saving the resources invested in the upkeep of the whole system or extension of lifecycle of batteries in the long run of power grid. However, low energy density in supercapacitor is critical weakness to utilization for huge energy storage system of power grid. So, it is still far from being able to replace batteries and struggle in meeting the demand for a high energy density. But, today, LIC (Lithium Ion Capacitor) considered as an attractive structure to improve energy density much more than EDLC (Electric double layer capacitor) because LIC has high voltage range up to 3.8 V. But, many aspects of the electrochemical performance of LIC still need to be examined closely in order to apply for commercial use. In this study, in order to improve the capacitance of LIC related with energy density, we designed new method of pre-doping in anode electrode. The electrode in cathode were fabricated in dry room which has a relative humidity under 0.1% and constant electrode thickness over $100{\mu}m$ was manufactured for stable mechanical strength and anode doping. To minimize of contact resistance, fabricated electrode was conducted hot compression process from room temperature to $65^{\circ}C$. We designed various pre-doping method for LIC structure and analyzing the doping mechanism issues. Finally, we suggest new pre-doping method to improve the capacitance and electrochemical stability for LIC.

The Pharmacological Studies on the Origin of Calcium ion in Myocardial Contraction (심근 수축에 있어서 Calcium 이온의 기원에 관한 약리학적 연구)

  • Ko, Chang-Mann;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.30 no.1
    • /
    • pp.67-73
    • /
    • 1994
  • Na-Ca exchange transports calcium ion either into (reverse mode Na-Ca exchange) or out of the cell (forward mode Na-Ca exchange) according to the direction of driving force produced by the changes in ratio of intra- and extra-cellular Na concentrations. Thus, Na-Ca exchange is regarded as the regulator of myocardial contraction. However, the existence of reverse mode Na-Ca exchange and its role in myocardial contraction is still questioned. Present study was performed to identify the presence of reverse mode Na-Ca exchange and its possible involvement in the regulation of myocardial contraction in rat heart. Using the left atria of rat, contraction was induced by electrical field stimulation (EFS, 0.5 msec duration and supramaximal voltage). Changing of the stimulation frequencies from resting 4 Hz to 0.4, 1 or 8 Hz caused typical negative staircase effect in twitch tension, but $^{45}Ca$ uptake showed bimodal increase. When the stimulation frequency was abruptly changed from 4 Hz to 0.4 Hz the atrial twitch tension showed three phased-enhancement, that is, the initial rapid increase (the first phase) followed by rapid decrease (the second phase) and stabilization (the third phase). $^{45}Ca$ uptake was equivalent to tension, i.e. initial significant increase in first 30 second and then decrease. Benzamil treatment abolished the first phase of increase in a dose dependent manner from $10^{-5}\;to\;3{\times}10^{-4}M.$ Bay k 8644 $(3{\times}10^{-5}M)$ treatment enhanced the inotropy induced by frequency reduction and abolished the second and third phase decreases. Benzamil treatment also suppressed the contraction stimulated by Bay K 8644. Although the contraction at 4 Hz stimulation was completely abolished by verapamil $3{\times}10^{-5}\;M$ pretreatment, the contraction reappeared as soon as the stimulation frequency was changed into 0.4 or 1 Hz and interstingly,$^{45}Ca$ uptake were significantly higher than no treatment. From these results, it is concluded that reduction of stimulation frequency causes calcium influx by the reverse mode Na-Ca exchange, resulting in initial rapid increase of twitch tension. then it turns into forward mode exchange to efflux the calcium, resulting in decrease of the twitch tension in left atria of rat.

  • PDF

Identification of Chloride Channels in Hamster Eggs (햄스터 난자에서 존재하는 Chloride 통로)

  • Kim, Y.-M.;Kim, J.-S.;Hong, S.-G.
    • Journal of Embryo Transfer
    • /
    • v.19 no.2
    • /
    • pp.101-112
    • /
    • 2004
  • Chloride($Cl^-$) channels play critical roles in cell homeostasis and its specific functions such as volume regulation, differentiation, secretion, and membrane stabilization. The presence of these channels have been reported in all kinds of cells and even in frog oocytes. These essential role of $Cl^-$­ channels in cell homeostasis possibly play any role in egg homeostasis and in the early stage of development, however, there has been no report about the presence of $Cl^-$­ channel in the mammalian oocyte. This study was performed to elucidate the presence of $Cl^-$­ channels in hamster eggs. When allowing only $Cl^-$­ to pass through the channel of the egg membrane by using impermeant cation such as N-methyl-D-glucamine(NMDG), single channel currents were recorded. These channel currents showed typical long-lasted openings interrupted by rapid flickering. Mean open $time({\tau}o)$ was 43${\pm}$10.14 ms(n=9, at 50 mV). The open probability(Po) was decrease with depolarization. The current-voltage relation showed outward rectification. Outward slop conductance(32${\pm}$5.4 pS, n=22) was steeper than the inward slop conductance(10${\pm}$1.3 pS). Under the condition of symmetrical 140 mM NaCl, single channel currents were reversed at 0 mV(n=4). This reversal potential(Erev) was shifted from 0 mV at 140 mM concentration of internal NaCl(140 mM [Na+]i) to ­9.8${\pm}$0.5 mV(n=4) at 70 mM [Na+]i and 11.5${\pm}$1.9 mV at 280 mM [Na+]i(n=4) respectively, strongly suggesting that these are single $Cl^-$­ channel currents. To examine further whether this channel has pharmacological property of the $Cl^-$­ channel, specific Cl­ channel blockers, IAA-94(Indanyloxyacetic acid-94) and DIDS(4, 4'-diisothiocyan ostillben- 2-2'disulfonic acid) were applied. IAA-94 inhibited the channel current in a dose-dependent manner and revealed a rapid and flickering block. From these electrophysiological and pharmacological resluts, we found the novel $Cl^-$­ channel present in the hamster oocyte membrane. The first identification of $Cl^-$­ channel in the hamster oocyte may give a clue for the further study on the function of $Cl^-$­ channel in the fertilization and cell differentiation.