Browse > Article
http://dx.doi.org/10.1007/s10059-009-0073-4

A Role for Leu247 Residue within Transmembrane Domain 2 in Ginsenoside-Mediated α7 Nicotinic Acetylcholine Receptor Regulation  

Lee, Byung-Hwan (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Choi, Sun-Hye (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Pyo, Mi Kyung (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Shin, Tae-Joon (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Hwang, Sung-Hee (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Kim, Bo-Ra (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Lee, Sang-MoK (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Lee, Jun-Ho (Department of Physiology, College of Oriental Medicine, Kyung-Hee University)
Lee, Joon-Hee (Department of Physical Therapy, Daebul University)
Lee, Hui Sun (Department of Physiology and Research Institute for Biomacromolecules, University of Ulsan, College of Medicine)
Choe, Han (Department of Physiology and Research Institute for Biomacromolecules, University of Ulsan, College of Medicine)
Han, Kyou-Hoon (Protein Analysis and Design Section, Molecular Cancer Research Center, Korea Research Institute of Bioscience and Biotechnology)
Kim, Hyoung-Chun (Neuropsychopharmacology and Toxicology Program, College of Pharmacy, Kangwon National University)
Rhim, Hyewhon (Life Science Division, Korea Institute of Science and Technology)
Yong, Joon-Hwan (Department of Occupational Therapy, Dongnam Health College)
Nah, Seung-Yeol (Ginsentology Research Laboratory and Department of Physiology, College of Veterinary Medicine, Konkuk University)
Abstract
Nicotinic acetylcholine receptors (nAChRs) play important roles in nervous system functions and are involved in a variety of diseases. We previously demonstrated that ginsenosides, the active ingredients of Panax ginseng, inhibit subsets of nAChR channel currents, but not ${\alpha}7$, expressed in Xenopus laevis oocytes. Mutation of the highly conserved Leu247 to Thr247 in the transmembrane domain 2 (TM2) channel pore region of ${\alpha}7$ nAChR induces alterations in channel gating properties and converts ${\alpha}7$ nAChR antagonists into agonists. In the present study, we assessed how point mutations in the Leu247 residue leading to various amino acids affect 20(S)-ginsenoside $Rg_3$ ($Rg_3$) activity against the ${\alpha}7$ nAChR. Mutation of L247 to L247A, L247D, L247E, L247I, L247S, and L247T, but not L247K, rendered mutant receptors sensitive to $Rg_3$. We further characterized $Rg_3$ regulation of L247T receptors. We found that $Rg_3$ inhibition of mutant ${\alpha}7$ nAChR channel currents was reversible and concentration-dependent. $Rg_3$ inhibition was strongly voltage-dependent and noncompetitive manner. These results indicate that the interaction between $Rg_3$ and mutant receptors might differ from its interaction with the wild-type receptor. To identify differences in $Rg_3$ interactions between wild-type and L247T receptors, we utilized docked modeling. This modeling revealed that $Rg_3$ forms hydrogen bonds with amino acids, such as Ser240 of subunit I and Thr244 of subunit II and V at the channel pore, whereas $Rg_3$ localizes at the interface of the two wild-type receptor subunits. These results indicate that mutation of Leu247 to Thr247 induces conformational changes in the wild-type receptor and provides a binding pocket for $Rg_3$ at the channel pore.
Keywords
ginsenoside $Rg_3$; interaction sites; mutant ${\alpha}7$ nAChR; Panax ginseng;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Boulter, J., Evans, K., Goldman, D., Martin, G., Treco, D., Heinemann, S., and Patrick, J. (1986). Isolation of a cDNA clone coding for a possible neural nicotinic acetylcholine receptor alphasubunit. Nature 319, 368-374   DOI   ScienceOn
2 Boulter, J., Connolly, J., Deneris, E., Goldman, D., Heinemann, S., and Patrick, J. (1987). Functional expression of two neuronal nicotinic acetylcholine receptors from cDNA clones identifies a gene family. Proc. Natl. Acad. Sci. USA 84, 7763-7767   DOI   ScienceOn
3 Bryson, K., McGuffin, L.J., Marsden, R.L., Ward, J.J., Sodhi, J.S., and Jones, D.T. (2005). Protein structure prediction servers at University College London. Nucleic Acids Res. 33, W36-38   DOI   ScienceOn
4 Choi, S., Jung, S.Y., Lee, J.H., Sala, F., Criado, M., Mulet, J., Valor, L.M., Sala, S., Engel, A.G., and Nah, S.Y. (2002). Effects of ginsenosides, active components of ginseng, on nicotinic acetylcholine receptors expressed in Xenopus oocytes. Eur. J. Pharmacol. 442, 37-45   DOI   PUBMED   ScienceOn
5 Gotti, C., Hanke, W., Maury, K., Moretti, M., Ballivet, M., Clementi, F., and Bertrand, D. (1994). Pharmacology and biophysical properties of $\alpha$7 and $\alpha$7-$\alpha$8 $\alpha$-bungarotoxin receptor subtypes immunopurified from the chick optic lobe. Eur. J. Neurosci. 6, 1281-1291   DOI   ScienceOn
6 Gotti, C., Carbonnelle, E., Moretti, M., Zwart, R., and Clementi, F. (2000). Drugs selective for nicotinic receptor subtypes: a real possibility or a dream? Behav. Brain Res. 113, 183-192   DOI   PUBMED   ScienceOn
7 Krogh, A., Larsson, B., von Heijne, G., and Sonnhammer, E.L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J. Mol. Biol. 305, 567-580   DOI   ScienceOn
8 Lee, J.H., Jeong, S.M., Kim, J.H., Lee, B.H., Yoon, I.S., Lee, J.H., Choi, S.H., Kim, D.H., Rhim, H., Kim, S.S., et al. (2005). Characteristics of ginsenoside Rg3-mediated brain $Na^{+}$ current inhibition. Mol. Pharmacol. 68, 1114-1126   DOI   ScienceOn
9 Orr-Urtreger, A., Broide, R.S., Kasten, M.R., Dang, H., Dani, J.A., Beaudet, A.L., and Patrick, J.W. (2000). Mice homozygous for the L250T mutation in the alpha7 nicotinic acetylcholine receptor show increased neuronal apoptosis and die within 1 day of birth. J. Neurochem. 74, 2154-2166   DOI   ScienceOn
10 Sala, F., Mulet, J., Choi, S., Jung, S.Y., Nah, S.Y., Rhim, H., Valor, L.M., Criado, M., and Sala, S. (2002). Effects of ginsenoside $Rg_{2}$ on human neuronal nicotinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 301, 1052-1059   DOI   ScienceOn
11 Lester, H.A., Dibas, M.I., Dahan, D.S., Leite, J.F., and Dougherty, D.A. (2004). Cys-loop receptors: new twists and turns. Trends Neurosci. 27, 329-336   DOI   ScienceOn
12 Sali, A., and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J. Mol. Biol. 234, 779-815   DOI   ScienceOn
13 Stierand, K., Maass, P.C., and Rarey, M. (2006). Molecular complexes at a glance: automated generation of two-dimensional complex diagrams. Bioinformatics 22, 1710-1716   DOI   ScienceOn
14 Seguela, P., Wadiche, J., Dineley-Miller, K., Dani, J.A., and Patrick, J.W. (1993). Molecular cloning, functional properties, and distribution of rat brain alpha 7: a nicotinic cation channel highly permeable to calcium. J. Neurosci. 13, 596-604
15 Broide, R.S., Salas, R., Ji, D., Paylor, R., Patrick, J.W., Dani, J.A., and De Biasi, M. (2002). Increased sensitivity to nicotineinduced seizures in mice expressing the L250T alpha7 nicotinic acetylcholine receptor mutation. Mol. Pharmacol. 61, 695-705   DOI   ScienceOn
16 Lee, B.H., Lee, J.H., Lee, S.M., Jeong, S.M., Yoon, I.S., Lee, J.H., Choi, S.H., Pyo, M.K., Rhim, H., Kim, H.C., et al. (2007). Identification of ginsenoside interaction sites in 5-$HT_{3A}$ receptors. Neuropharmacology 52, 1139-1150   DOI   ScienceOn
17 Gotti, C., and Clementi, F. (2004) Neuronal nicotinic receptors: from structure to pathology. Prog. Neurobiol. 74, 363-396   DOI   ScienceOn
18 Heidmann, T., Oswald, R.E., and Changeux, J.P. (1983). Multiple sites of action for noncompetitive blockers on acetylcholine receptor rich membrane fragments from torpedo marmorata. Biochemistry 22, 3112-3127   DOI   ScienceOn
19 Lena, C., and Changeux, J.P. (1997). Pathological mutations of nicotinic receptors and nicotine-based therapies for brain disorders. Curr. Opin. Neurobiol. 7, 674-682   DOI   ScienceOn
20 Weiland, S., Bertrand, D., and Leonard, S. (2000). Neuronal nicotinic acetylcholine receptors: from the gene to the disease. Behav. Brain Res. 113, 43-56   DOI   PUBMED   ScienceOn
21 Karlin, A. (2002). Emerging structure of the nicotinic acetylcholine receptors. Nat. Rev. Neurosci. 3, 102-114   DOI   PUBMED   ScienceOn
22 Verdonk, M.L., Cole, J.C., Hartshorn, M.J., Murray, C.W., and Taylor, R.D. (2003). Improved protein-ligand docking using GOLD. Proteins 52, 609-623   DOI   ScienceOn
23 Bertrand, D., Devillers-Thiery, A., Revah, F., Galzi, J.L., Hussy, N., Mulle, C., Bertrand, S., Ballivet, M., and Changeux, J.P. (1992). Unconventional pharmacology of a neuronal nicotinic receptor mutated in the channel domain. Proc. Natl. Acad. Sci. USA 89, 1261-1265   DOI   ScienceOn
24 Changeux, J.P., and Edelstein, S.J. (2001). Allosteric mechanisms in normal and pathological nicotinic acetylcholine receptors. Curr. Opin. Neurobiol. 11, 369-377   DOI   ScienceOn
25 Jensen, M.L., Schousboe, A., and Ahring, P.K. (2005). Charge selectivity of the Cys-loop family of ligand-gated ion channels. J. Neurochem. 92, 217-225   DOI   ScienceOn
26 Sine, S.M., and Taylor, P. (1982). Local anesthetics and histrionicotoxin are allosteric inhibitors of the acetylcholine receptor. Studies of clonal muscle cells. J. Biol. Chem. 257, 8106-8114   PUBMED
27 Castro, N.G., and Albuquerque, E.X. (1995). alpha-Bungarotoxinsensitive hippocampal nicotinic receptor channel has a high calcium permeability. Biophys. J. 68, 516-24   DOI   ScienceOn
28 Couturier, S., Bertrand, D., Matter, J.M., Hernandez, M.C., Bertrand, S., Millar, N., Valera, S., Barkas, T., and Ballivet, M. (1990). A neuronal nicotinic acetylcholine receptor subunit ($\alpha$7) is developmentally regulated and forms a homooligomeric channel blocked by $\alpha$-BTX. Neuron 5, 847-856   DOI   ScienceOn
29 Elgoyhen, A.B., Johnson, D.S., Boulter, J., Vetter, D.E., and Heinemann, S. (1994). $\alpha$9: an acetylcholine receptor with novel pharmacological properties expressed in rat cochlear hair cells. Cell 79, 705-715   DOI   PUBMED   ScienceOn
30 Nah, S.Y., Kim, D.H., and Rhim, H. (2007). Ginsenosides: are any of them candidates for drugs acting on the central nervous system? CNS Drug Rev. 13, 381-404   DOI   PUBMED   ScienceOn
31 Miyazawa, A., Fujiyoshi, Y., and Unwin, N. (2003). Structure and gating mechanism of the acetylcholine receptor pore. Nature 42, 949-955   DOI   ScienceOn
32 Le Novere, N., and Changeux, J.P. (1995). Molecular evolution of the nicotinic acetylcholine receptor: an example of multigene family in excitable cells. J. Mol. Evol. 40, 155-172   DOI   ScienceOn
33 Revah, F., Bertrand, D., Galzi, J.L., Devillers-Thiery, A., Mulle, C., Hussy, N., Bertrand, S., Ballivet, M., and Changeux, J.P. (1991). Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor. Nature 353, 846-849   DOI   ScienceOn
34 Chini, B., Raimond, E., Elgoyhen, A.B., Moralli, D., Balzaretti M., and Heinemann, M. (1994). Molecular cloning and chromosomal localization of the human alpha 7-nicotinic receptor subunit gene (CHRNA7). Genomics 19, 379-381   DOI   ScienceOn
35 Lyford, L.K., Sproul, A.D., Eddins, D., McLaughlin, J.T., and Rosenberg, R.L. (2003). Agonist-induced conformational changes in the extracellular domain of alpha 7 nicotinic acetylcholine receptors. Mol. Pharmacol. 64, 650-658   DOI   ScienceOn
36 Arias, H.R. (1996). Luminal and non-luminal non-competitive inhibitor binding sites on the nicotinic acetylcholine receptor. Mol. Membr. Biol. 13, 1-17   DOI   PUBMED
37 Palma, E., Mileo, A.M., Eusebi, F., and Miledi, R. (1996). Threoninefor-leucine mutation within domain M2 of the neuronal $\alpha$7 nicotinic receptor converts 5-hydroxytryptamine from antagonist to agonist. Proc. Natl. Acad. Sci. USA 93, 11231-11235   DOI   ScienceOn
38 Unwin, N. (2005). Refined structure of the nicotinic acetylcholine receptor at 4A resolution. J. Mol. Biol. 346, 967-989   DOI   PUBMED   ScienceOn
39 Nashmi, R., and Lester, H.A. (2006). CNS localization of neuronal nicotinic receptors. J. Mol. Neurosci. 30, 181-184   DOI   ScienceOn