DOI QR코드

DOI QR Code

A Study on the Performance Analysis of AIoT High-Efficiency Streetlamp for Carbon Emissions

탄소배출권용 AIoT 고효율 가로등 성능분석 연구

  • Seung-Ho Park (Department of IT Semiconductor Convergence Engineering, Tech University of Korea) ;
  • Seong-Uk Shin (Department of IT Semiconductor Convergence Engineering, Tech University of Korea) ;
  • Kyung-Sunl Yoo (Department of Nano & Semiconductor Engineering, Tech University of Korea)
  • 박승호 (한국공학대학교 IT반도체융합공학과) ;
  • 신성욱 (한국공학대학교 IT반도체융합공학과) ;
  • 유경선 (한국공학대학교 나노반도체공학과)
  • Received : 2023.11.14
  • Accepted : 2023.12.22
  • Published : 2023.12.30

Abstract

Following the signing of the Paris Agreement on Climate Change (UNFCCC, 2015), the world is expanding greenhouse gas reduction activities through comprehensive participation that includes not only developed countries but also developing countries. Major countries around the world are placing high expectations on the effectiveness of total carbon emissions regulation through the carbon emissions market. However, in order to obtain carbon credits, third-party verification is required based on quantitative carbon reduction data. Accordingly, in this paper, we developed an AIoT high-efficiency street light for carbon emissions and conducted a performance analysis study to measure the luminous efficiency of the lighting fixture. To obtain carbon emissions rights, we used high-efficiency LED PKG, developed our own high-voltage PFC, and developed high-efficiency lighting fixtures capable of communication. For communication, the 2.4GHz LoRa method was adopted between the lighting fixture and the gateway. Lens design was conducted through simulation of Korea Expressway Corporation's standard streetlight types A, B, and C. The performance of the streetlight was verified as being more efficient than other existing products through the measurement of luminous efficiency by an accredited rating agency, and it is expected that carbon emissions rights will be obtained by reducing electrical energy through this.

파리기후변화협약(UNFCCC, 2015) 체결에 따라 선진국뿐만 아니라 개발도상국을 포함하는 포괄적 참여를 통해 전 세계가 온실가스 감축 활동을 확대하고 있다. 세계 주요국은 탄소배출권 시장을 통한 탄소배출 총량규제의 효과에 많은 기대를 걸고 있다. 그러나 탄소배출권을 얻기 위해서는 정량적인 탄소저감량 데이터를 바탕으로 제3자 검증이 필요하다. 이에 본 논문에서는 탄소배출권용 AIoT 고효율 가로등을 개발하여 등기구의 광효율을 측정하는 성능분석 연구를 진행했다. 탄소배출권을 얻기 위해 고효율 LED PKG를 사용하며 고전압용 PFC를 자체 개발하고 통신이 가능한 고효율의 등기구를 개발했다. 통신을 위해 등기구와 Gateway간 2.4GHz LoRa 방식을 채택했다. 한국 도로공사 표준 가로등 Type A, B, C 시뮬레이션을 통하여 렌즈 설계를 진행했다. 가로등의 성능은 공인 성적기관의 광효율 측정을 통하여 기존 타제품 대비 고효율의 성능을 검증하였으며, 이를 통한 전기에너지 절감으로 탄소배출권을 획득할 것으로 기대된다.

Keywords

Acknowledgement

This work was supported by the Korea Environmental Industry & Technology Institute(KEITI) funded by the Ministry of Environment(MOE) (Training DX-based carbon supply network environmental experts). This work was supported by the Korea Institute of Energy Technology Evaluation and Planning(KETEP) and the Ministry of Trade, Industry & Energy(MOTIE) of the Republic of Korea (No. 20224000000200).

References

  1. D. S. Kim & B. H. Led & I. Huh (2022). A Study on Domestic and International Climate Crisis Response Legislation Trends for 'Carbon Neutral 2050'. Hannam Journal of Law&Technology, 28(1), 95-137. DOI : 10.32430/ilst.2022.28.1.95
  2. N. C. Chung (2022). mprovements of the Renewable Energy Legislation for the Realization of 2050 Carbon Neutral. The Justice, (190), 5-27. DOI : 10.29305/tj.2022.6.190.05
  3. J. S. Lee (2021). The Significances and Challenges of the Framework Act on Carbon Neutrality and Green Growth to Cope with Climate Crisis. Environmental Law Review, 43(3), 243-277.
  4. K. H. Choi & S. M. Yoon (2023). Efficiency analysis of the Korean carbon emissions market. Journal of The Korean Data Analysis Society, 25(1), 235-247. DOI : 10.37727/jkdas.2022.25.1.235
  5. W. H. Lee (2018). Carbon Trading Strategies from the Perspective of International Trade. Electronic trade research, 16(2), 81-109. DOI : 10.17255/etr.16.2.201805.810.29305/tj.2022.6.190.05
  6. K. S. Kim & Y. M. Jang (2023). Determinants of Carbon Emissions of SME and Mid-sized Enterprises : Focusing on Companies Granted Credit Guaranteed Loans. Journal of SME finance, 43(3), 39-73. DOI : 10.33219/jsmef.2023.43.3.002
  7. (2021.06). Carbon Credit Market Analysiss, Coherent
  8. N. J. Miller (2015). FLICKER: Understanding the New IEEE Recommended Practice. U. S. Department of Energy [Online]. https://www.energy.gov/sites/prod/files/2015/05/ 0f22/miller%2Blehman_flicker_lightfair2015.pdf
  9. What is Pi Filter : Circuit, Working and Its Applications Electornics/Projects/Focus [Online]. https://www.elprocus.com/pi-filter-circuit-worki ng-and-its-applications
  10. B. J. Lee (2017). A Difference Study on the Lighting Simulation of the Illuminance Values from Daylight for the Glass Greenhouse. Journal of the Korea Academia-Industrial cooperation Society, 18(8), 350-354. DOI : 10.5762/KAIS.2017.18.8.350
  11. S. N. (1947). IES lighting handbook: the standard lighting guide. Now York : Illuminating Engineering Society.
  12. N. C. Jung (2022). Improvements of the Renewable Energy Legislation for the Realization of 2050 Carbon Neutral. The Justice, (190), 5-27. DOI : 10.29305/tj.2022.6.190.05
  13. W. Cho (2019). LoRa for LPWA Network: Overview and its Performance Enhancement Technologies. Journal of the Korea Institute of Electronic Communication Sciences, 14(2), 283-288. DOI : 10.22156/JKCS.2018.7.1.001
  14. J. S. Bae & Y. S. Yoon & E. H. Kwon & T. W. Jeon & Y. G. Lee (2018). Evaluation of Power Generation Efficiency and GHG Reduction Effect in Municipal Waste Incineration Facilities - Enhancement of Waste Heat Recovery Capability -. KSNRE, 14(3), 20-29. DOI : 10.7849/ksnre.2018.9.14.3.020
  15. K. S. Chae & S. P. Lee & S. W. Yoon & 松岡俊文 (2010). Trends of Underground CO2 Storage Technology for the Large Scale Reduction of GHG. TUNNEL AND UNDERGROUND SPACE, 20(5), 309-317. UCI : G704-000521.2010.20.5.006
  16. D. W. Noh (2011). Estimation of Regional GHG Mitigation Potential and Abatement Cost. Regional development research, 43(1), 27-48. UCI : I410-ECN-0102-2012-350-002422275 I410-ECN-0102-2012-350-002422275