• Title/Summary/Keyword: Voltage Control Area

Search Result 301, Processing Time 0.027 seconds

A High Speed CMOS Arrayed Optical Transmitter for WPON Applications (WPON 응용을 위한 고속 CMOS어레이 광트랜스미터)

  • Yang, Choong-Reol;Lee, Sang-Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38B no.6
    • /
    • pp.427-434
    • /
    • 2013
  • In this paper, the design and layout of a 2.5 Gbps arrayed VCSEL driver for optical transceiver having arrayed multi-channel of integrating module is confirmed. In this paper, a 4 channel 2.5 Gbps VCSEL (vertical cavity surface emitting laser) driver array with automatic optical power control is implemented using $0.18{\mu}m$ CMOS process technology that drives a $1550{\mu}m$ high speed VCSEL used in optical transceiver. To enhance the bandwidth of the optical transmitter, active feedback amplifier with negative capacitance compensation is exploited. We report a distinct improvement in bandwidth, voltage gain and operation stability at 2.5Gbps data rate in comparison with existing topology. The 4-CH chip consumes only 140 mW of DC power at a single 1.8V supply under the maximum modulation and bias currents, and occupies the die area of $850{\mu}m{\times}1,690{\mu}m$ excluding bonding pads.

A Capacitance Deviation-to-Time Interval Converter Based on Ramp-Integration and Its Application to a Digital Humidity Controller (램프-적분을 이용한 용량치-시간차 변환기 및 디지털 습도 조절기에의 응용)

  • Park, Ji-Mann;Chung, Won-Sup
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.12
    • /
    • pp.70-78
    • /
    • 2000
  • A novel capacitance deviation-to-time interval converter based on ramp-integration is presented. It consists of two current mirrors, two schmitt triggers, and control digital circuits by the upper and lower sides, symmetrically. Total circuit has been with discrete components. The results show that the proposed converter has a linearity error of less than 1% at the time interval(pulse width) over a capacitance deviation from 295 pF to 375 pF. A capacitance deviation of 40pF and time interval of 0.2 ms was measured for sensor capacitance of 335 pF. Therefore, the high-resolution can be known by counting the fast and stable clock pulses gated into a counter for time interval. The application of a novel capacitance deviation-to time interval converter to a digital humidity controller is also presented. The presented circuit is insensitive to the capacitance difference in disregard of voltage source or temperature deviation. Besides the accuracy, it features the small MOS device count integrable onto a small chip area. The circuit is thus particularly suitable for the on-chip interface.

  • PDF

Transverse dynamics of slender piezoelectric bimorphs with resistive-inductive electrodes

  • Schoeftner, Juergen;Buchberger, Gerda;Benjeddou, Ayech
    • Smart Structures and Systems
    • /
    • v.18 no.2
    • /
    • pp.355-374
    • /
    • 2016
  • This paper presents and compares a one-dimensional (1D) bending theory for piezoelectric thin beam-type structures with resistive-inductive electrodes to ANSYS$^{(R)}$ three-dimensional (3D) finite element (FE) analysis. In particular, the lateral deflections and vibrations of slender piezoelectric beams are considered. The peculiarity of the piezoelectric beam model is the modeling of electrodes in such a manner that is does not fulfill the equipotential area condition. The case of ideal, perfectly conductive electrodes is a special case of our 1D model. Two-coupled partial differential equations are obtained for the lateral deflection and for the voltage distribution along the electrodes: the first one is an extended Bernoulli-Euler beam equation (second-order in time, forth order in space) and the second one the so-called Telegrapher's equation (second-order in time and space). Analytical results of our theory are validated by 3D electromechanically coupled FE simulations with ANSYS$^{(R)}$. A clamped-hinged beam is considered with various types of electrodes for the piezoelectric layers, which can be either resistive and/or inductive. A natural frequency analysis as well as quasi-static and dynamic simulations are performed. A good agreement between the extended beam theory and the FE results is found. Finally, the practical relevance of this type of electrodes is shown. It is found that the damping capability of properly tuned resistive or resistive-inductive electrodes exceeds the damping performance of beams, where the electrodes are simply linked to an optimized impedance.

Soft Start System of Induction Motor using Emergency Generator (비상 발전기를 이용한 유도전동기의 소프트 기동 시스템)

  • Hwangbo, Chan;Ko, Jae-Ha;Lee, Jung-Hwan;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.433-441
    • /
    • 2022
  • In general, in an emergency generator system for an electric facility including an induction motor load, an emergency power generation facility larger than the facility load capacity is built due to the initial starting current of the induction motor. In order to reduce this economic burden, various methods to reduce the inrush current of induction motors are applied to suppress the additional expansion of generators due to the reduction of power generation facilities and the increase in electrical facilities. Among these methods, when a system with a built-in soft start function of an induction motor using an inverter is built, it is the best way to reduce the inrush current of the induction motor to less than the rated current. However, in this case, the installation cost of the inverter to drive the induction motor increases. This paper proposes a soft start method of an induction motor by expanding the frequency and voltage control operation area of an emergency generator. In addition, proposed a speed calculation method based on power factor information, which is essential information for stable soft start of an induction motor, and a method for generating a speed command value of the governor for starting with maximum torque.

p-type CuI Thin-Film Transistors through Chemical Vapor Deposition Process (Chemical Vapor Deposition 공정으로 제작한 CuI p-type 박막 트랜지스터)

  • Seungmin Lee;Seong Cheol Jang;Ji-Min Park;Soon-Gil Yoon;Hyun-Suk Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.491-496
    • /
    • 2023
  • As the demand for p-type semiconductors increases, much effort is being put into developing new p-type materials. This demand has led to the development of novel new p-type semiconductors that go beyond existing p-type semiconductors. Copper iodide (CuI) has recently received much attention due to its wide band gap, excellent optical and electrical properties, and low temperature synthesis. However, there are limits to its use as a semiconductor material for thin film transistor devices due to the uncontrolled generation of copper vacancies and excessive hole doping. In this work, p-type CuI semiconductors were fabricated using the chemical vapor deposition (CVD) process for thin-film transistor (TFT) applications. The vacuum process has advantages over conventional solution processes, including conformal coating, large area uniformity, easy thickness control and so on. CuI thin films were fabricated at various deposition temperatures from 150 to 250 ℃ The surface roughness root mean square (RMS) value, which is related to carrier transport, decreases with increasing deposition temperature. Hall effect measurements showed that all fabricated CuI films had p-type behavior and that the Hall mobility decreased with increasing deposition temperature. The CuI TFTs showed no clear on/off because of the high concentration of carriers. By adopting a Zn capping layer, carrier concentrations decreased, leading to clear on and off behavior. Finally, stability tests of the PBS and NBS showed a threshold voltage shift within ±1 V.

Growth of Green Pepper(Capsicum annuum L.) in a Plastic Greenhouse Covered with Anti-dropping Plasma Film (방적성 Plasma 처리 필름으로 피복된 플라스틱온실의 풋고추 생육)

  • Chun, Hee;Kim, Kyung-Je;Kim, Jin-Young;Kim, Hyun-Hwan;Lee, Si-Young
    • Journal of Bio-Environment Control
    • /
    • v.9 no.3
    • /
    • pp.156-160
    • /
    • 2000
  • The Plasma film treated with a high electric voltage was developed to enhance flow down of condensation drops on inside plastic film. Arch type greenhouse framed with iron pipe of 25mm diameter defand 1.5mm thickness were covered with either the developed plasma film or surfactant film(control). Green pepper seedlings raised for 40 days in plug trays were transplanted at a density of 110cm by 30cm in each greenhouse. The mount of condensational water on film surface, generated by 7$0^{\circ}C$ water bath chimney systems and flew down, was collected and measured. The amount of collected water after 150 minutes was 2.56 mL.100c $m^{-2}$ and 0.94mL.100c $m^{-2}$ , respectively, in the plasma film and surfactant film-covered greenhouses. The amount of condensational water drops attached on the cover at 08:20 a.m. at 60 days filter covering was 0.34mL.100c $m^{02}$ and 0.32mL.100c $m^{-2}$ , respectively, in the plasma film- and surfactant film-covered greenhouses. Solar irradiance transmitted into greenhouse was 2.0% higher in the greenhouse covered with the plasma film tan that in the greenhouse covered with the surfactant film. Air temperature in the plasma film-covered greenhouse was higher than the surfactant film-covered greenhouse by 0.5$^{\circ}C$. However, there was no difference in relative humidity between the two greenhouse. Plant height, leaf area, dry weight and early yield showed no significant differences.s.

  • PDF

A 12b 200KHz 0.52mA $0.47mm^2$ Algorithmic A/D Converter for MEMS Applications (마이크로 전자 기계 시스템 응용을 위한 12비트 200KHz 0.52mA $0.47mm^2$ 알고리즈믹 A/D 변환기)

  • Kim, Young-Ju;Chae, Hee-Sung;Koo, Yong-Seo;Lim, Shin-Il;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.48-57
    • /
    • 2006
  • This work describes a 12b 200KHz 0.52mA $0.47mm^2$ algorithmic ADC for sensor applications such as motor controls, 3-phase power controls, and CMOS image sensors simultaneously requiring ultra-low power and small size. The proposed ADC is based on the conventional algorithmic architecture with recycling techniques to optimize sampling rate, resolution, chip area, and power consumption. The input SHA with eight input channels for high integration employs a folded-cascode architecture to achieve a required DC gain and a sufficient phase margin. A signal insensitive 3-D fully symmetrical layout with critical signal lines shielded reduces the capacitor and device mismatch of the MDAC. The improved switched bias power-reduction techniques reduce the power consumption of analog amplifiers. Current and voltage references are integrated on the chip with optional off-chip voltage references for low glitch noise. The employed down-sampling clock signal selects the sampling rate of 200KS/s or 10KS/s with a reduced power depending on applications. The prototype ADC in a 0.18um n-well 1P6M CMOS technology demonstrates the measured DNL and INL within 0.76LSB and 2.47LSB. The ADC shows a maximum SNDR and SFDR of 55dB and 70dB at all sampling frequencies up to 200KS/s, respectively. The active die area is $0.47mm^2$ and the chip consumes 0.94mW at 200KS/s and 0.63mW at 10KS/s at a 1.8V supply.

Design and Evaluation of Pulsed Electromagnetic Field Stimulation Parameter Variable System for Cell and Animal Models (세포 및 동물모델용 펄스형 전자기장 자극 파라미터 가변장치 설계 및 평가)

  • Lee, Jawoo;Park, Changsoon;Kim, Junyoung;Lee, Yongheum
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • An electromagnetic generator with variable stimulation parameters is required to conduct basic research on magnetic flux density and frequency for pulsed electromagnetic fields (PEMFs). In this study, we design an electromagnetic generator that can conduct basic research by providing parameters optimized for cell and animal experimental conditions through adjustable stimulation parameters. The magnetic core was selected as a solenoid capable of uniform and stable electromagnetic stimulation. The solenoid was designed in consideration of the experimental mouse and cell culture dish insertion. A voltage and current adjustable power supply for variable magnetic flux density was designed. The system was designed to be adjustable in frequency and pulse width and to enable 3-channel output. The reliability of the system and solenoid was evaluated through magnetic flux density, frequency, and pulse width measurements. The measured magnetic flux density was expressed as an image and qualitatively observed. Based on the acquired image, the stimulation area according to the magnetic flux density decrease rate was extracted. The PEMF frequency and pulse width error rates were presented as mean ± SD, and were confirmed to be 0.0928 ± 0.0934% and 0.529 ± 0.527%, respectively. The magnetic flux density decreased as the distance from the center of the solenoid increased, and decreased sharply from 60 mm or more. The length of the magnetic stimulation area according to the degree of magnetic flux density decrease was obtained through the magnetic flux density image. A PEMF generator and stimulation parameter control system suitable for cell and animal models were designed, and system reliability was evaluated.

A Study on the Resistve Switching Characteristic of Parallel Memristive Circuit of Lithium Ion Based Memristor and Capacitor (리튬 이온 기반 멤리스터 커패시터 병렬 구조의 저항변화 특성 연구)

  • Kang, Seung Hyun;Lee, Hong-Sub
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.4
    • /
    • pp.41-45
    • /
    • 2021
  • In this study, in order to secure the high reliability of the memristor, we adopted a patterned lithium filament seed layer as the main agent for resistive switching (RS) characteristic on the 30 nm thick ZrO2 thin film at the device manufacturing stage. Lithium filament seed layer with a thickness of 5 nm and an area of 5 ㎛ × 5 ㎛ were formed on the ZrO2 thin film, and various electrode areas were applied to investigate the effect of capacitance on filament type memristive behavior in the parallel memristive circuit of memristor and capacitor. The RS characteristics were measured in the samples before and after 250℃ post-annealing for lithium metal diffusion. In the case of conductive filaments formed by thermal diffusion (post-annealed sample), it was not available to control the filament by applying voltage, and the other hand, the as-deposited sample showed the reversible RS characteristics by the formation and rupture of filaments. Finally, via the comparison of the RS characteristics according to the electrode area, it was confirmed that capacitance is an important factor for the formation and rupture of filaments.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.