• Title/Summary/Keyword: Volcanic Rock

Search Result 281, Processing Time 0.024 seconds

Tafoni Geomorphic Development in the Western Coast of Dongdo of Dokdo, Korea (독도 동도 서쪽 해안의 타포니 지형 발달)

  • Hwang, Sang-Ill;Park, Kyung-Geun
    • Journal of the Korean association of regional geographers
    • /
    • v.13 no.4
    • /
    • pp.422-437
    • /
    • 2007
  • Dokdo has historical and political meaning in relation to the territorial problems with Japan. The area can be the main factor to explain the formation and development process of East-Sea as exposure volcanic island at East-Sea with Ulreong-island. Accordingly, it also has an important meaning of physical geography aspects In this research, it is perceived the geomorphological development process of slope due to the salt weathering which is considered as the most important factor to understand whole geomorphology of Dokdo. And researched how a geomorphology of this sort affects to animal and plants. The peculiar geomorphology is tafoni which is a weathering geomorphology and one of the remarkable geomorphology in preservation of Dokdo. Tafoni at west part of Dongdo is distributed intensively near shoreline which is composed tuff. The shape of tafoni is mainly massive, circle and oval in Massive tuff breccia layer also is formed toward horizontality bedding direction in Bedded lapilli tuff. Tafoni in Dokdo is constituted after middle of Holocene. This fact can be proved by ranging at surface of sea-cliff which is formed wave erosion after middle of Holocene sea-level reaching to present level. Tafoni is also the most contribute factor of geomorphology dissection of Dokdo as it is eroded the bed rock with salt weathering. In bottom part of tafoni it has an important function for habitat of birds. Herbaceous plants are on it. To procrastinate of bed rock dissection by growth of Tafoni, conservation of vegetation and soil are most important factor.

  • PDF

Development of Ceramic Media for Yeast Immobilization (효모 고정화용 세라믹 담체의 개발)

  • 이율락;박상재
    • KSBB Journal
    • /
    • v.15 no.3
    • /
    • pp.285-292
    • /
    • 2000
  • Support media for yeast immobilization was prepared from a porous volcanic rock used as a moisturizer in orchid growing. The rock was broken to the size of 2-3 mm and burned at $600^{\circ}C$ in a furnace in order to remove organic materials blocking the pores or treated with HCI solution or NaOH solution to remove the inorganic dirts by dissolving. Even through both the acid and the akali solution were effective the latter was not recommendable because it broke the pore structure by dissolving the elements of the media. This media was mainly consisted of SiO2 with $Al_2O_3$ as a minor component and CaO and K2O as trace elements. It had the finely developed pores of $15-80\mu\textrm{m}$size. Yeast immobilization capacity of this media was about $5{\times108}$ cells/ml bed which is large enough to be used for the practical applications. Yeast immobilization capacities of Alumina and Cordierite were much smaller than that of silica-based media. Scanning electron micrograph of Cordierite and Alumina showed uneven surfaces and small size of pores in contrast to relatively smooth surface and large pores of silica based media which means that smooth surface and large pores are desirable for the good adsorption of microbes on the media.

  • PDF

High-resolution Echo Facies Analysis of Sedimentary Deposits around Dok-Island Volcanoes (독도 화산군 주변 퇴적층의 고해상 탄성파상 분석)

  • Lee, Yong-Kuk;Han, Sang-Joon;Yoon, Seok-Hoon
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.6 no.2
    • /
    • pp.103-113
    • /
    • 2001
  • This study presents Quaternary sedimentation pattern around Dok-Island volcanoes (Dok Island and Dok Seamount), based on analysis of high-resolution (chirp) echo characters. Echo facies If, showing sharp, continuous bottom echo without subbottom reflectors, is recorded mainly from the flat tops of the volcanoes. This facies indicates sands and gravels (re) deposited by shallow marine processes. Echo facies IIA in the basin floor and basal slopes of the volcanoes and Oki Bank is characterized by semi-prolonged bottom and several parallel subbottom echoes. This facies reflects hemipelagic settling with intermittent influences of turbidity currents in the slope areas. Echo facies IIC is recorded from acoustically-transparent debrite masses on the basal slopes of the volcanoes and Oki Bank. Echo facies IIIA is characterized by irregular hyperbolic echoes in the slope areas of the volcanoes. It suggests hard rock basement or irregular volcanic edifices. Echo facies IIIC shows regularly-overlapping hyperbolic bottom echoes. It is interpreted to represent rock-fall deposits (talus) accumulated in the mid-slope area. Echo characters and topography suggest that the tops of Dok-Island volcanoes were flattened and lowered by shallow-marine erosional processes. The eroded sediments were transported to and deposited in the base of slope and basin plain mainly by debris flows and turbidity currents along submarine canyons and valleys.

  • PDF

A Study on Mineralogical and Basic Mechanical Properties of Fault Gouges in 16 Faults, Korea (국내 16개 단층대 단층비지의 광물학적 및 기초물성에 관한 연구)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Choo, Chang Oh;Kim, Woo-Seok;Seo, Yong-Seok
    • Journal of the Mineralogical Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.109-126
    • /
    • 2015
  • Because fault gouge developed at the center of fault is recognized as one of the most important weak sites, it is evident that clay mineralogy and physical properties greatly affect the rock stability. The purpose of this study is to establish the relationship of mineralogy and physical factors that control rock stability in fault zones. We analyzed a total of 51 samples from 16 main faults which were selected from a Korea fracture map, using XRD, SEM, and physical analyses like unit weight, friction and cohesion properties. Though it is considered that the most common clay minerals comprising fault gouge are kaolinite, illite and smectite, clay mineralogy slightly varies depending on lithology: illite > smectite > kaolinite and chlorite in volcanic rocks, kaolinite and chlorite > illite > smectite in sedimentary rocks, and illite > smectite > kaolinite and chlorite in abundance, respectively. Friction angle decreases with increasing clay content. Cohesion increases with increasing clay content below the 45 % region while it decreases with increasing clay content at the region higher than 45%, with some scatters in the data. It is likely that these results are ascribed to the physical heterogeneity of fault gouges with varying content of different clay minerals.

Study on Major Mineral Distribution Characteristics in Groundwater in South Korea (국내 지하수의 주요 미네랄 분포 특성에 관한 연구)

  • Kim, Jeonghee;Ryoo, Rina;Lee, Jongsu;Song, Daesung;Lee, Young-Joo;Jun, Hang-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.10
    • /
    • pp.566-573
    • /
    • 2016
  • In order to support effective usage of groundwater as an alternative water resource in future, we investigated distribution characteristics of minerals related with human health. While recent studies tended to focus on small scale, this study broadened research area up to nationwide scale to understand groundwater hydrology and regional, geological distributions of minerals in wide area; we investigated mineral distributions of national groundwater monitoring networks, developed GIS-based mineral maps, and reviewed correlation with geological features. As a result, calcium showed the highest concentration among 5 minerals (Ca, Mg, Na, K, Si) and potassium showed the lowest. Calcium concentration in limestone and sedimentary zone was the highest, and that in pore-volcanic-rock zone was the lowest. While calcium, magnesium and sodium showed differences in concentrations in intrusive-igneous-rock and sedimentary zone, potassium was not within geological features. When we studied regional differences, there were no tendency, but Jeju and Gangwon area showed differences in concentrations of calcium and silica.

A Geophysical Study for the Subsurface Structure of the Bomun Basin (보문분지 구조파악을 위한 지구물리탐사)

  • Suh, Man-Cheol;Yun, Hye-Su
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • Subsurface structure of the Bomun basin was studied along three survey tracks of Line-1, Line-2, and Line-3 using geomagnetic, radioactive, and seismic refraction methods. Abrupt changes found at 2.55 km west and 1.6 km east in the profile of magnetic anomaly along Line-1 are correlated with geologic boundary of the basin. Profiles of radioactive intensity also represent abrupt changes at 2.55 km west of Line-1 and at 1.9 km of Line-2. Cretaceous basement rock has relatively high magnetic anomaly of $200\;{\sim}\;500\;nT$ while sedimentary rocks of the Bomun basin have relatively low magnetic anomaly of $-100\;{\sim}\;+100\;nT$. Radioactive intensity also represents charateristic differences between Cretaceous basement and sedimentary rocks of the Bomun basin. Rocks of Cretaceous basement have lower radioactive intensity than the rocks of the Bomun basin. Magnetic anomaly of of the Bomun basin represents lowest anomaly in western part and increases gradullay toward east. This phenomenon is interpreted as a half graben structure dipping westward. Black shale known by previous studies near the western boundary has high magnetic anomalies and low radioactive intensity. This phenomenon provide a possibility of volcanic rock rather than black shale near the western boundary of the basin along Line-1. Sedimentary layers having velocities of 455 m/s, 1904 m/s, and 2662 m/s are developed to have westward dipping of $2.3^{\circ}$ in the central area of the Bomun basin. The result is consistent with a half-graben model dipping westward which were derieved from magnetic anomaly data.

  • PDF

Physical Properties and Friction Characteristics of Fault Cores in South Korea (단층핵의 물리적 특성과 마찰 특성의 상관관계 분석)

  • Moon, Seong-Woo;Yun, Hyun-Seok;Seo, Yong-Seok
    • Economic and Environmental Geology
    • /
    • v.53 no.1
    • /
    • pp.71-85
    • /
    • 2020
  • To understand behavior of fault cores in the field of geotechnical and geological engineering, we present an investigation of the physical properties (breccia and clay contents, unit weight, porosity, and water content) and friction characteristics (internal friction angle and cohesion) of fault cores, in granitic, sedimentary, and volcanic rocks in South Korea. The breccia contents in the fault cores are positively correlated with unit weight and negatively correlated with clay content, porosity, and water content. The inter-quartile ranges of internal friction angles and cohesion calculated from direct shear tests are 16.7-38.1° and 2.5-25.3 kPa, respectively. The influence of physical properties on the friction characteristics of the fault cores was analyzed and showed that in all three rock types the internal friction angles are positively correlated with breccia content and unit weight, and negatively correlated with clay content, porosity, and water content. In contrast, the cohesions of the fault cores are negatively correlated with breccia content and unit weight, and positively correlated with clay content, porosity, and water content.

Petrochemistry and Sr ${\cdot}$ Nd Isotopic Composition of foliated Granite in the Jeoniu Area, Korea (전주지역 엽리상화강암의 암석화학 및 Sr ${\cdot}$ Nd 동위원소 조성)

  • Shin, In-Hyun;Park, Cheon-Young;Jeong, Youn-Joong
    • Journal of the Korean earth science society
    • /
    • v.22 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • Composition of the major and trace elements, Rb-Sr isochron age Sr-Nd isotope composition were determined for foliated in the Jeonju area, in the middle part of the Ogcheon Fold Bet, Korea. The geochemical characteristics of the Jeonju foliated granite indicate that the granite had been crystallized from a calc-alkaline series, and formed in a volcanic are environment. The isotopic compositions of the Jeonju foliated granite give Rb-Sr whole rock errorchron age of 168.2${\pm}$8 Ma(2${\sigma}$), corresponding to the middle Jurassic period, with the Sr initial ratio of 0.71354${\pm}$0.00031. $^{143}$Nd/$^{144}$Nd ratios, ${\varepsilon}$Nd and ${\varepsilon}$Sr values range from 0.511477 to 0.511744, -15.4${\sim}$-21.2, and +108.8${\sim}$+l42.6, respectively. Model ages were caculated to be 1.82${\sim}$2.89Ga. The isotopic data of Jeonju foliated granite indicate that the source material may have been derived from partial melting of continental crust materials.

  • PDF

Development of Round Trip Occurrence Simulator Considering Tooth Wear of Drill Bit (시추비트의 마모도를 고려한 라운드 트립 발생 예측 시뮬레이터 개발)

  • Lee, Seung Soo;Kim, Kwang Yeom;Shin, Hyu-Soung
    • Tunnel and Underground Space
    • /
    • v.23 no.6
    • /
    • pp.480-492
    • /
    • 2013
  • After the introduction of geothermal power generation technology based on engineering reservoir creation that can be applied on non-volcanic region, industrial need for studies on the efficient and economic execution of costly deep-depth drilling work becomes manifest increasingly. However, since it is very difficult to predict duration and cost of boring work with acceptable reliability because of many uncertain events during the execution, efficient and organized work management for drilling is not easily achievable. Especially, the round trip that discretely occurs because of the abrasion of bit takes more time as the depth goes deeper and it has a great impact on the work performance. Therefore, a technology that can simulate the occurrence timing and depth of round trip in advance and therefore optimize them is essentially required. This study divided the abrasion state of bit into eight steps for simulation cases and developed a forecast algorithm, i.e., TOSA which can analyze the depth and timing of round trip occurrence. A methodology that can divide a unit section for simulation has been suggested; while the Bourgoyne and Young model has been used for the forecast of drilling rates and bit abrasion extent by section. Lastly, the designed algorithm has been systemized for the convenience of the user.

Geometric Analysis of Fracture System and Suggestion of a Modified RMR on Volcanic Rocks in the Vicinity of Ilgwang Fault (일광단층 인근 화산암 암반사면의 단열계 기하 분석 및 암반 분류 수정안 제시)

  • Chang, Tae-Woo;Lee, Hyeon-Woo;Chae, Byung-Gon;Seo, Yong-Seok;Cho, Yong-Chan
    • The Journal of Engineering Geology
    • /
    • v.17 no.3
    • /
    • pp.483-494
    • /
    • 2007
  • The properties of fracture system on road-cut slopes along the Busan-Ulsan express way under construction are investigated and analyzed. Fracture spacing distributions show log-normal form with extension fractures and negative exponential form with shear fractures. Straight line segments in log-log plots of cumulative fracture length indicate a power-law scaling with exponents of -1.13 in site 1, -1.01 in site 2 and -1.52 in site 3. It is likely that the stability and strength of rock mass are the lowest in site 1 as judged from the analyses of spacing, density and inter-section of fractures in three sites. In contrast, the highest efficiency of the fracture network for conducting fluid flow is seen in site 3 where the largest cluster occupies 73% through the window map. Based on the field survey data, this study modified weighting values of the RMR system using a multiple regression analysis method. The analysis result suggests a modified weighting values of the RMR parameters as follows; 18 for the intact strength of rock; 61 for RQD; 2 for spacing of discontinuities; 2 for the condition of discontinuities; and 17 for ground water.