• Title/Summary/Keyword: Void Generation

Search Result 50, Processing Time 0.042 seconds

Improvement of the subcooled boiling model using a new net vapor generation correlation inferred from artificial neural networks to predict the void fraction profiles in the vertical channel

  • Tae Beom Lee ;Yong Hoon Jeong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.12
    • /
    • pp.4776-4797
    • /
    • 2022
  • In the one-dimensional thermal-hydraulic (TH) codes, a subcooled boiling model to predict the void fraction profiles in a vertical channel consists of wall heat flux partitioning, the vapor condensation rate, the bubbly-to-slug flow transition criterion, and drift-flux models. Model performance has been investigated in detail, and necessary refinements have been incorporated into the Safety and Performance Analysis Code (SPACE) developed by the Korean nuclear industry for the safety analysis of pressurized water reactors (PWRs). The necessary refinements to models related to pumping factor, net vapor generation (NVG), vapor condensation, and drift-flux velocity were investigated in this study. In particular, a new NVG empirical correlation was also developed using artificial neural network (ANN) techniques. Simulations of a series of subcooled flow boiling experiments at pressures ranging from 1 to 149.9 bar were performed with the refined SPACE code, and reasonable agreement with the experimental data for the void fraction in the vertical channel was obtained. From the root-mean-square (RMS) error analysis for the predicted void fraction in the subcooled boiling region, the results with the refined SPACE code produce the best predictions for the entire pressure range compared to those using the original SPACE and RELAP5 codes.

Cyclic liquefaction and pore pressure response of sand-silt mixtures

  • Dash, H.K.;Sitharam, T.G.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.83-108
    • /
    • 2011
  • The effect of non-plastic fines (silt) on liquefaction and pore pressure generation characteristics of saturated sands was studied through undrained stress controlled cyclic triaxial tests using cylindrical specimens of size 50 mm diameter and height 100 mm at different cyclic stress ratios and at a frequency of 0.1 Hz. The tests were carried out in the laboratory adopting various measures of sample density through various approaches namely gross void ratio approach, relative density approach, sand skeleton void ratio approach, and interfine void ratio approach. The limiting silt content and the relative density of a specimen were found to influence the undrained cyclic response of sand-silt mixtures to a great extent. Undrained cyclic response was observed to be independent of silt content at very high relative densities. However, the presence of fines significantly influenced this response of loose to medium dense specimens. Combined analyses of cyclic resistance have been done using the entire data collected from all the approaches.

Design and Performance Evaluation of Visualization System for Measuring the Void Fraction of Two-phase Flow (다상 유동 Void Fraction 가시화 장치 설계 및 성능 평가)

  • Choi, Chang-Hyun;Choi, Seong-Won;Song, Simon
    • Journal of the Korean Society of Visualization
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2017
  • A two-phase flow observed in a heat exchanger or nuclear power generation often has a profound effect on undesirable noise or flow characteristics. Void fraction, which refers to the ratio of gas (or liquid) to the total fluid, affects heat transfer coefficient, vibration and so forth. In other words, void fraction is one of most important parameters in two-phase flow since it contributes to comprehend the characteristics of two-phase flow. We developed a two-phase flow visualization system to measure cross-sectional and volumetric void fractions by using quick closing valves and image processing software. With this system, we could observe the plug, slug, and stratified flow patterns of two-phase flow and measure a myriad of void fractions. As a consequence of the experiment, we found that the estimated void fractions were largely coincident with the predictive values by Chisholm model.

Modeling Heterogeneous Wall Nucleation in Flashing Flow of Initially Subcooled Water

  • Park, Jong-Woon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.241-246
    • /
    • 1996
  • An analytical model to calculate rate of vapor generation due to heterogeneous wall nucleation in flashing flow is developed. In the present model, an important parameter of the vapor generation term, i.e. nucleation site density is calculated by integrating its probability distribution function with respect to active cavity radius. The limits of integration are minimum and maximum active cavity radii, and these are formulated using an active cavity model for nucleate boiling. This formulation, therefore. can statistically account for the effect of surface specific thermo-physical and geometric conditions on the vapor generation rate and flashing inception. For verifying the adequacy of the present model, steady state two-fluid and the bubble transport equations are solved with applicable constitutive equations. The applicable region of the bubble transport equation is also extended to churn-turbulent flow regime to predict interfacial area concentration at high void fraction. Predicted results in terms of axial pressure and void fraction profiles along the channels are compared with experimental data of Super Moby Dick and BNL Reasonable agreements have been achieved and this shows the applicability of the present model to flashing flow analysis.

  • PDF

A Study on the Ship Wake Model under the Ocean Environment (해상 환경을 고려한 수상함 항적 모델 연구)

  • Bae, Ho Seuk;Kim, Won-Ki;Son, Su-Uk;Kim, Woo-Shik;Park, Joung-Soo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.22-30
    • /
    • 2021
  • The ship wake generated by rotation of the propeller yields changes of characteristics of sound wave such as attenuation and scattering. To develope a battle field environment simulator for military purposes, it is very important to understand acoustical properties of ship wake. Existing research results have limitations in direct application because they performed under simple conditions or model ships were applied. In this study, we developed a ship wake generation model based on the ship's geometric wake distribution theory. The model can provide spatial distribution and void fraction with various marine environments as well as ship size. Through the developed model, geometric distribution features of ship wake according to the ship's maneuvering conditions were successfully simulated. In addition, changes of the bubble void fraction with time at any location within the battle field environment were identified. Therefore, the developed model is expected to be used in the development of a simulator to measure the acoustic characteristics of the ship wake.

Failure analysis on the phenomenon of water condensing of automotive head lamp assembly (자동차용 head lamp의 수밀원인 분석)

  • Cho, Young-Jin;Jeon, Jong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1349-1354
    • /
    • 2008
  • In this study, we try to find the root cause of water condensing failures in a headlamp using chemical and mechanical analysis. Through the surface inspection by OM, SEM and CT, it was found that water infiltrate into the headlamp through hotmelt adhesive debonding part caused by adhesion force degradation and poor quality. IR spectra shows that adhesion force degradation are characterized by increase of some functional group(1742, 1710, 1649, 1016). Through the ESPI measurement, it is turned out that bonding structural change by thermal expansion and degradation of adhesive can be the cause of void generation. So it is recommended that cooling passage and the bonding part should be redesigned to give a guarantee of less thermal stress and high adhesion quality.

  • PDF

The Partial Discharge Properties of Oxidized Polyethylene (산화된풀리에틸렌의 부분방전 특성)

  • 이현수;한상옥
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.802-808
    • /
    • 1992
  • To investigate degradation procedure and life time of the oxidized PE and the unoxidized PE, alternative voltage is applied to the CIGRE Method-II (CM-II) electrode system, which is loaded artificial void, and measures the distribution of partial discharging generation. From the results, the samples etched by oxidation had wide degradation area of dielectric strength. Furthermore, discharge starting voltage was shifted to low voltage, the discharge generation frequency was high and consequently, the quantity of mean charge becomes small. Also, life time of the oxdized sample is shortened according as the oxidation time is longer.

  • PDF

A Study on the Real Quality and Void Fraction of Subcooled Refrigerant Flow (과냉 비등류의 실제건도와 보이드율에 관한 연구)

  • Kim, J.H.;Kim, C.S.;Kim, K.K.;Oh, C.
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.17 no.2
    • /
    • pp.36-43
    • /
    • 1993
  • Real quality and axial void fraction distribution of subcooled refrigerant flow is very important to predict the heat transfer rate and pressure drop in the design of refrigerating system. In the subcooled boiling region, the liquid bulk temperature is still below the corresponding saturation temperature. But beyond the net vapor generation point, bubble detachment is occured actively from the vapor layer formed on the wall. A reliable method to predict the vapor fraction from the liquid bulk temperature is suggested in this paper. And also the actual quality of the subcooled R-113 flow is calculated in the range of 261-1239kg/$m^2$s mass velocity and 10-30K subcooling.

  • PDF

Improvement of the MARS subcooled boiling model for a vertical upward flow

  • Ha, Tae-Wook;Jeong, Jae Jun;Yun, Byong-Jo
    • Nuclear Engineering and Technology
    • /
    • v.51 no.4
    • /
    • pp.977-986
    • /
    • 2019
  • In the thermal-hydraulic system codes, such as MARS and RELAP5/MOD3, the Savannah River Laboratory (SRL) model has been adopted as a subcooled boiling model. It, however, has been shown that the SRL model cannot take into account appropriately the effects of inlet liquid velocity and hydraulic diameter on axial void fraction development. To overcome the problems, Ha et al. (2018) proposed a modified SRL model, which is applicable to low-pressure and low-Pe conditions (P < 9.83 bar and $Pe{\leq}70,000$) only. In this work, the authors extended the modified SRL model by proposing a new net vapor generation (NVG) model and a wall evaporation model so that the new subcooled boiling model can cover a wide range of thermal-hydraulic conditions with pressures ranging from 1.1 to 69 bar, heat fluxes of $97-1186kW/m^2$, Pe of 3600 to 329,000, and hydraulic diameters of 5-25.5 mm. The new model was implemented in the MARS code and has been assessed using various subcooled boiling experimental data. The results of the new model showed better agreements with measured void fraction data, especially at low-pressure conditions.

Comparison of Void Content between Cyldrical Concrete Specimen and Concrete Core Specimen Using ASTM C 642 Test Procedure (ASTM C 642 시험방법을 이용한 구조체 코어공시체와 원주형 공시체의 공극률 비교 평가)

  • Son, Joeng Jin;Kim, Ji-Hyun;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.631-640
    • /
    • 2022
  • Recently, construction accidents have occurred due to illegal water addition and insufficient quality control at domestic construction sites. In this study, the void content test method proposed in ASTM C 642 was used to provide a reference guideline for evaluation on the quality control status of cast-in-place structural concrete. For this purpose, simulated structural concrete for coring purpose was prepared in addition to the concrete cylindrical specimens with the same formulation, and the changes in compressive strength, elastic modulus, and void content related to coring were evaluated. According to experimental results, the compressive strength and modulus of elasticity were reduced by coring, which was associated with the generation of microcracks during coring. With respect to void content, the difference in void content between the cylindrical specimen and the cored specimen was up to 1.69%. If this value is used as a correction factor, it is possible to estimate the real void content of the cast-in-place structural concrete. By comparing this with the void content obtained from cylindrical concrete specimens, it is possible to evaluate the quality control status and amount of illegal water addition on the structural concrete.