• Title/Summary/Keyword: Visualization Elements

Search Result 198, Processing Time 0.029 seconds

Object imaging in the water by neural network and multi-element ultrasound transducer (신경회로망과 다소자 초음파 트랜스듀스에 의한 수중물체의 화상화)

  • 김응규
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.1
    • /
    • pp.80-87
    • /
    • 1998
  • In this study, a multi-element ultrasound transducer has been developed aiming at basic experiment of three-dimension endovascular ultrasound endscopy for clinical diagnos, and experimental results of two-dimensional object imaging in the water are presented by the ultrasound tranducer and neural network. Each ultrasound echo received by thirty-six angular transducer elements is inputed to the eural network, and then backpropagation is used as a learning algorithm. A three-layer artificial neural network is used for learning and imaging of targetw placed in front of the transducer. The object shape of imaging is restricted to rectangular shapes by considering experimental restraint conditions. As a result, rough visualization can be realized even for objects with unlearned shapes through the training by primitive patterns of a various sized rectangular targets.

  • PDF

Development of Multiple Neural Network for Fault Diagnosis of Complex System (복합시스템 고장진단을 위한 다중신경망 개발)

  • Bae, Yong-Hwan
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.2
    • /
    • pp.36-45
    • /
    • 2000
  • Automated production system is composed of many complicated techniques and it become a very difficult task to control, monitor and diagnose this compound system. Moreover, it is required to develop an effective diagnosing technique and reduce the diagnosing time while operating the system in parallel under many faults occurring concurrently. This study develops a Modular Artificial Neural Network(MANN) which can perform a diagnosing function of multiple faults with the following steps: 1) Modularizing a complicated system into subsystems. 2) Formulating a hierarchical structure by dividing the subsystem into many detailed elements. 3) Planting an artificial neural network into hierarchical module. The system developed is implemented on workstation platform with $X-Windows^{(r)}$ which provides multi-process, multi-tasking and IPC facilities for visualization of transaction, by applying the software written in $ANSI-C^{(r)}$ together with $MOTIF^{(r)}$ on the fault diagnosis of PI feedback controller reactor. It can be used as a simple stepping stone towards a perfect multiple diagnosing system covering with various industrial applications, and further provides an economical approach to prevent a disastrous failure of huge complicated systems.

  • PDF

Visualization of Air Quality based on the IMPROVE Models (IMPROVE 모델에 근거한 대기질의 시각화)

  • Kim, Tae-Sik
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.299-307
    • /
    • 2009
  • It is well-known that the scenic visibility achieved in our naked eyes is related with the quality of aerosol condition which is composed of primary and secondary air pollutants. In recent, the IMPROVE organization in U.S.A. has developed two algorithms to estimate the visible length depending on the elements of air pollutant. Using these algorithms, we are to represent the condition of aerosol quality with the well-known scenic images of the observing area so that any one that have no sufficient chemical knowledge may feel and understand the level of air pollution in visuality.

  • PDF

Visualization of Integration of Surface Geometric Modeling and Shell Finite Element Based on B-Spline Representation (스플라인 곡면 모델링과 쉘 유한요소와의 연동 가시화)

  • 조맹효;노희열;김현철
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.505-511
    • /
    • 2002
  • In the present study, we visualize the linkage framework between geometric modeling and shell finite element based on B-spline representation. For the development of a consistent shell element, geometrically exact shell elements based on general curvilinear coordinates is provided. The NUBS(Non Uniform B-Spline) is used to generate the general free form shell surfaces. Employment of NUBS makes shell finite element handle the arbitrary geometry of the smooth shell surfaces. The proposed shell finite element .model linked with NUBS surface representation provides efficiency for the integrated design and analysis of shell surface structures. The linkage framework can potentially provide efficient integrated approach to the shape topological design optimizations for shell structures.

  • PDF

Application of BIM Elements for Owner's Decision - Making Support (발주자 참여 확대를 위한 BIM 적용요소에 관한 연구)

  • Lee, Kyung-Ha;Park, Jae-Hyun;Cho, Sung;Cho, Yong;Yun, Seok-Heon;Paek, Joon-Hong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.05b
    • /
    • pp.185-188
    • /
    • 2009
  • Recently clients requirements and social requirements are complex and large sized in construction projects. Futhermore, processes and steps are more complexed than before. Unsuitable reflection of clients brings mistaken opinions. A phase of middle change makes delay and change. It brings problems of waste expense and time. 80, first stage of planning and schematic design processes have to reflect of clients opinion actively. by increasing of constructions project competitiveness. Recently, BIM(Building Information Modeling is being researched frequently. Through visualization of information proceed step by step and it helps cognition of adapting information. 80, this paper finds and suggests solution of reflecting clients opinion and requirements and non professional clients and positively support of client participation watching based on BIM.

  • PDF

Evaluation of BSR Noise Properties of Instrument Panel in a Vehicle (자동차 계기판 BSR 소음특성 평가)

  • Shin, Su-Hyun;Cheong, Cheol-Ung;Kim, Duck-Whan;Jung, Sung-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.7
    • /
    • pp.644-650
    • /
    • 2010
  • Among various elements to affect customer's evaluation of vehicle quality, BSR(Buzz, Squeak, Rattle) are considered to be a mostly contributing factor. In this paper, we provide the test method which can be used to reduce the BSR noise of instrument panel in a vehicle. First, potential source regions of the instrument panel for BSR are localized by using the vibration-excitor and near-acoustic field visualization system. Then, subjective evaluation of BSR noise from the detected potential noise source regions is made with the Zwicker's loudness and time-varying loudness methods. This illustrative analysis reveals that current experimental methods can be used as a test procedure to systematically tackle BSR issues in early stage of the vehicle development cycle, which can result in the reduction of the production cost.

Application of GML and X3D to 3D Urban Data Modeling: A Practical Approach

  • Kim, Hak-Hoon;Lee, Ki-Won
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.1
    • /
    • pp.43-53
    • /
    • 2007
  • In this study, two standard specifications such as GML (Geography Markup Language) from OGC (Open Geo-spatial Consortium, Inc.) and X3D (extensible 3D) from Web3D consortium were dealt with for a web-based 3D urban application without using commercialized tools. In the first step of this study, DEM (Digital Elevation Model) and 3D GIS data sets were converted to GML structure with attribute schema. Then, these GML elements were projected onto a common coordinate system, and they were converted to the X3D format for visualization on web browser. In this work, a 3D urban data model, as a simple framework model, is extended to a framework model having further detailed information, depending upon application levels. Conclusively, this study is to demonstrate for practical uses of GML and X3D in 3D urban application and this approach can be applied to other application domains regarding system integrators and data sharing communities on distributed environments.

Improving Computational Thinking Comprehension through Visualized Sorting App Development

  • Kim, Jongwan;Kim, Taeseong
    • Journal of Multimedia Information System
    • /
    • v.8 no.3
    • /
    • pp.191-196
    • /
    • 2021
  • Computational thinking refers to the process and method of solving everyday problems using computers. When teaching a computational thinking class for computer majors and non-majors at university, the easiest example to deliver the concept of computational thinking is sorting. Sorting is the concept of arranging given data in order. In this work, we have implemented four visualized sorting algorithms that anyone can easily use. In particular, it helps to understand the difference between the algorithms by showing the number of comparisons and exchanges between elements, which are the criteria for evaluating the performance of the sorting algorithm in real time. It was confirmed that the practice of using the sorting visualization app developed in this research contributed to the improvement of students' understanding of computational thinking.

Responsive Pneumatic Facade with Adaptive Openings for Natural Ventilation (창호의 개폐조절을 기반으로 한 리스펀시브 뉴메틱 파사드)

  • Lee, Jisun;Lee, Hyunsoo
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.33 no.12
    • /
    • pp.29-39
    • /
    • 2017
  • The building skins are important architectural elements in both functional and aesthetical aspects. This study focuses on developing a responsive facade with autonomous opening and closing behaviors in accordance with environmental conditions and user requirements for natural ventilation for the office building. The pneumatic ETFE panels are applied as the skin materials taking advantage of the efficiency of the inflatable skin of lightness, architectural performance and sustainable material properties. The biomimetic design methodology is taken for its innovative and visionary concept for the facade design. The interpretation of the building facade in analogy to natural organisms delivers functional and aesthetic characters. By exploring the structural movements of the plant pores, the facade control is developed to be autonomous by the parameter values. The facade opening and closing configurations are derived through parametric modeling and visualization programming. Through the application of this study, expected results are to improve user comfort and energy efficiency.

Development of ROS-based Flight and Mission State Communication Node for X-Plane 11-based Flight Simulation Environment

  • Cho, Sungwook
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.4
    • /
    • pp.75-84
    • /
    • 2021
  • A novel robot-operating-system-based flight and mission state communication node for X-Plane 11 flight control simulation environments and its simulation results were discussed. Although the proposed communication method requires considerable implementation steps compared with the conventional MATLAB/Simulink-based User Datagram Protocol (UDP) block utilization method, the proposed method enables a direct comparison of cockpit-view images captured during flight with the flight data. This comparison is useful for data acquisition under virtual environments and for the development of flight control systems. The fixed/rotary-wing and ground terrain elements simulated in virtual environments exhibited excellent visualization outputs, which can overcome time and space constraints on flight experiments and validation of missionary algorithms with complex logic.