• Title/Summary/Keyword: Visual Power

Search Result 765, Processing Time 0.037 seconds

A Study on the Improvement of Visual Acuity and Refractive Power According to General Characteristics of Cataract Surgery Patients

  • Cho, Seon Ahr;Lee, Seong Jae
    • International Journal of Advanced Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.71-79
    • /
    • 2018
  • For 299 patients who had undergone cataract surgeries we investigated the difference in visual acuity and refractive power before and after cataract surgery and the clinical change of the visual acuity and the refractive power according to age, gender, hospital visit time and specific medical history. We found the factors affecting preoperative and postoperative outcomes of the cataract patients in metropolitan hospitals by input, process, and outcome and analyzed medical characteristics and patient characteristics as the input variables. T-test and ANOVA have been performed for statistical analysis of functional status, and general status and the technical characteristic as the process variable and the outcome variable of diagnosis. Visual acuity improved significantly in patients who had undergone cataract surgery. However, the change in refractive power did not show a statistically significant difference but only a slight difference. The improvement of male patients was greater than that of female patients. The difference in age was more effective in patients under 50 years old and the effect of cataract surgery was relatively high in patients without the presence of specific medical history. Cataract surgery did not seem to help all of the patients, but it is more effective in improving visual acuity and refractive power. We conclude that simultaneous cataract surgery in both eyes is reasonable in order to have at least the better effect.

Implementation of Inductive Wireless Power Transfer System based on LLC Converter without Wireless Communication between Tx and Rx (Tx-Rx간 무선통신이 필요 없는 LLC 컨버터 기반 유도형 무선전력전송 시스템 구현)

  • Kim, Moon-Young;Choi, Shin-Wook;Kang, Jeong-il;Han, Jonghee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.5
    • /
    • pp.311-318
    • /
    • 2019
  • In general wireless power transfer systems (WPTSs), power transfer is controlled by the wireless communication between a transmitter (Tx) and a receiver (Rx). However, WPTS is difficult to apply in electronic products that do not have batteries, such as TVs. A WPTS with resonators based on a transformer of LLC series resonant converter is proposed in this study to eliminate wireless communication units between a Tx and an Rx. The proposed system operates at the boundary of the resonance frequency, and the required power can be stably supplied to authorized devices even though some misalignment occurs. Moreover, standby power standards for the electronic product can be satisfied.

Development of a Calculating Program for the Prism Power Influencing to Binocular Vision according to Shift of Binocular Visual Points in the Distance Vision Spectacles (원용안경의 양안 주시점 이동에 따른 양안시에 미치는 프리즘 굴절력 산출 프로그램 개발)

  • Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.15 no.3
    • /
    • pp.257-262
    • /
    • 2010
  • Purpose: Developing a calculating program for the prism power which influenced the binocular vision according to shifts of binocular visual points in the distance vision spectacles. Methods: By using the Delphi 6.0 programming language, we developed a calculating program of the relative binocular prism power according to the movements of binocular visual points in the distance vision spectacles, which was calculated by dragging the mouse along the traces of binocular visual points on the computer window. Results: We developed a calculating program for the relative binocular prism power according to the movements of binocular visual points in the distance vision spectacles. The user of the program could confirm the trace of visual points by allowing them to display the trace of binocular visual points on the computer screen with a mouse button. An application on confirming the variation of prism power by graphs in the program also allowed the user to use the program more conveniently. Conclusions: By using the developed program, the user could easily calculate the relative binocular prism power according to shifts of binocular visual points in the distance vision spectacles. We also found that the developed program helped the user to receive a lot of assistance in analyzing the asthenopia.

Visual Evaluation of Design Variations in Power Shoulder Jacket (파워 숄더 재킷의 디자인변화에 따른 시각적 평가)

  • Kim, Jeong-Mee;Lee, Jung-Soon
    • Journal of Fashion Business
    • /
    • v.15 no.1
    • /
    • pp.80-91
    • /
    • 2011
  • The purpose of this study is to evaluate the differences of visual effects and visual images by variations in shoulder angle and shoulder width of power shoulder jacket. The stimuli are 5 samples: One control group, 2 variations of the angle of shoulder line and 2 variations of the width of shoulder line. The data has been obtained from 87 fashion design majors. The data has been analyzed by Factor Analysis, Anova, Scheffe's Test and the Correlation Analysis. The results of the study are as follows: The visual images by the angle and the width of shoulder line of power shoulder jacket are composed of 4 factors : attention, stiffness and softness, masculinity, and trendiness. Among these factors, attention factor is estimated by the most important factor. The visual effects by the angle and the width of shoulder line of power shoulder jacket are composed of 3 factors : whole silhouette, neck and arm figure, upper body figure. In these factors, the whole silhouette is estimated by the most important factor. The power shoulder jacket with extreme changes in shoulder angle has double images: it looks trendy and classy but also gives an awkward image. In case of changes in shoulder width, the visual evaluation shows big differences with the degree of expansion. The visual evaluation with variation in angle has stronger image and effect than that in width. The power shoulder jacket trend itself is also evaluated that variation in angle reflects the trend better than that in width.

Human Visual System-Aware Optimal Power-Saving Color Transformation for Mobile OLED Devices (모바일 OLED 디스플레이를 위한 인간 시각 만족의 최적 전력 절감 색 변환)

  • Lee, Jae-Hyeok;Kim, Eun-Sil;Kim, Young-Jin
    • Journal of KIISE
    • /
    • v.43 no.1
    • /
    • pp.126-134
    • /
    • 2016
  • Due to the merits of OLED displays such as fast responsiveness, wide view angle, and power efficiency, their use has increased. However, despite the power efficiency of OLED displays, the portion of their power consumption among the total power consumption is still high since user interaction-based applications such as instant messaging, video play, and games are frequently used. Their power consumption varies significantly depending on the display contents and thus color transformation is one of the low-power techniques used in OLED displays. Prior low-power color transformation techniques have not been rigorously studied in terms of satisfaction of the human visual system, and have not considered optimal visual satisfaction and power consumption at the same time in relation to color transformation. In this paper, we propose a novel low-power color transformation technique which strictly considers human visual system-awareness as well as optimization of both visual satisfaction and power consumption in a balanced way. Experimental results show that the proposed technique achieves better human visual satisfaction in terms of visuality and also shows on average 13.4% and 22.4% improvement over a prior one in terms of power saving.

Reaction Times to Predictable Visual Patterns Reflect Neural Responses in Early Visual Cortex

  • Joo, Sung Jun
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.57-64
    • /
    • 2021
  • It has long been speculated that the visual system should use a coding strategy that takes advantage of statistical redundancies in images. But how such a coding strategy should manifest in neural responses has been less clear. Low-level image structure related to the power spectrum of natural images appears to be captured by a hard-wired efficient code in the retina of the fly and precortical structures like the LGN of cats that maximizes information content through the limited capacity channel of the optic nerve. But visual images are typically filled with higher-order structure beyond that captured by the power spectrum and visual cortex is not constrained by the same capacity limits as the optic nerve. Whether and how visual cortex can flexibly code for higher order redundancies is unknown. Here we show using psychophysical techniques that the neural response in early human visual cortex may be modulated by orientation redundancies in images such that a visual feature that is contained within a predictive pattern results in slower reaction times than a feature that deviates from a pattern, suggesting lower neural responses to predictable stimuli in the visual cortex. Our results point to a neural response in early visual cortex that is sensitive to global patterns and redundancies in visual images and is in marked contrast to standard models of cortical visual processing.

Psychological Changes and Visual Preferences of Floating Solar Photovoltanics - Focusing on EEG and SD Methods - (수상 태양광발전시설의 심리적 변화 및 시각적 선호도 - 뇌파(EEG) 및 SD법을 중심으로 -)

  • Zhang, YuJie;Jung, Teayeol;Seo, Seonghyeok
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.2
    • /
    • pp.131-142
    • /
    • 2023
  • Solar power facilities to reduce carbon emissions are continuously being installed in forests, farmland, city, and on water. However, research on visual preferences and the psychological impact on observers after installing solar power facilities is insufficient. Therefore, in this study, shooting was conducted according to the viewing distance of the near, middle, and distant views of Hapcheon Dam, Korea's largest floating photovoltaic power plant. The acquired images were edited using Photoshop to compare the presence or absence of floating photovoltaic power generation facilities. In addition, psychological changes and visual preferences were analyzed through an EEG test and questionnaire among 50 participants. The results are summarized, as follows. First, the installation of water photovoltaic power generation facilities has a passive impact on the subjects' psychological changes and visual preference. Second, the psychological changes due to the installation of water photovoltaic power generation facilities were judged to affect almost all research subjects, regardless of nationality, gender, or universisty major. Third, the visual preference for installing the water photovoltaic power generation facility is low, which can be interpreted as the water photovoltaic power generation facility negatively affecting the "friendliness" and "naturalness" of the landscape. In addition, this change in visual preference was found to differ depending on the gender and universiity major of the subjects. Fourth, the psychological change and visual preference of the floating photovoltaic power generation facility according to the viewing distance, found that the close range had a higher effect than the middle and distant ranges.

The Effects of Panel Convexity on Visual Performance and Fatigue in Using Cathode-Ray Tube (CRT) Displays (CRT 디스플레이의 패널곡률이 시각작업 수행도와 안피로도에 미치는 영향)

  • Kim, Sang-Ho;Jang, Seong-Ho;Im, Jong-Ho
    • Journal of the Ergonomics Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.27-44
    • /
    • 2003
  • An experiment was carried out to compare the suitability in visual tasks between flat and conventional (convex) cathode-ray tube (CRT) displays. The subjects performed visual search tasks during 2-h for detecting target words among distracters presented on the screen. The subjects' visual performance was evaluated with average time and number of errors made to complete the tasks. Visual fatigue after the search tasks was also evaluated in terms of degradations in accommodative power and subjective ratings. Difference was not found in task time between the two displays, but flat CRT showed a lower number of errors than conventional CRT. The difference in number of errors was statistically significant at 0=0.05. Although there was no difference between the displays in degradations of accommodative power, results from the subjective ratings showed that flat CRT yields less fatigue than conventional CRT. The results partially support the hypothesis that panel convexity of CRT displays has a significant effect on the performance and fatigue during visual tasks and thus flat CRT is the better display than conventional one.

A Study on the Operator Performance According to the Drastic Change of Illumination Level and Lighting Environment of Control Room in Nuclear Power Plants

  • Shin, Kwang Hyeon;Lee, Yong Hee
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2013
  • Objective: This study describes the change of operator performance in drastic change of illumination level, and proposes an alternative method to cope with it. Background: The control standard of illumination for nuclear power plants(NPPs) is based on the set of limit criteria for maintaining a specific illumination level. However, there is a possibility to cause human errors according to the psychological and physiological influences to operators in the situation of drastic change of illumination such as SBO(Station Black Out), so a basic study is necessary to review the current approach. Method: We assessed the visual fatigue, subjective work load and task performance according to the three illumination situations(Normal Illumination, Emergency Illumination, and Drastic Change of Illumination). Result: Research finding shows that there are not significant differences in task performance between normal illumination (1,000lx level) and emergency illumination (100lx level), only if beyond the dark adaptation limit. However, subjective work load on mental demand and visual fatigue show a potential challenge to visual performance in drastic change of illumination. Conclusion/Application: Several trials can complement this challenge in NPPs by applying 3-way communication, enhancing readability of procedures, and managing the visual factors affecting the operators' performance through a Visual Environment Management Program including visual health aspects, etc.

Human Visual System-aware Dimming Method Combining Pixel Compensation and Histogram Specification for TFT-LCDs

  • Jin, Jeong-Chan;Kim, Young-Jin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.12
    • /
    • pp.5998-6016
    • /
    • 2017
  • In thin-film transistor liquid-crystal displays (TFT-LCDs), which are most commonly used in mobile devices, the backlight accounts for about 70% of the power consumption. Therefore, most low-power-related studies focus on realizing power savings through backlight dimming. Image compensation is performed to mitigate the visual distortion caused by the backlight dimming. Therefore, popular techniques include pixel compensation for brightness recovery and contrast enhancement, such as histogram equalization. However, existing pixel compensation techniques often have limitations with respect to blur owing to the pixel saturation phenomenon, or because contrast enhancement cannot adequately satisfy the human visual system (HVS). To overcome these, in this study, we propose a novel dimming technique to achieve both power saving and HVS-awareness by combining the pixel compensation and histogram specifications, which convert the original cumulative density function (CDF) by designing and using the desired CDF of an image. Because the process of obtaining the desired CDF is customized to consider image characteristics, histogram specification is found to achieve better HVS-awareness than histogram equalization. For the experiments, we employ the LIVE image database, and we use the structural similarity (SSIM) index to measure the degree of visual satisfaction. The experimental results show that the proposed technique achieves up to 15.9% increase in the SSIM index compared with existing dimming techniques that use pixel compensation and histogram equalization in the case of the same low-power ratio. Further, the results indicate that it achieves improved HVS-awareness and increased power saving concurrently compared with previous techniques.